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Abstract

Many man made and naturally occurring phenomermdyding city sizes, incomes, word frequencies, eadhquake
magnitudes, are distributed according to a powerdstribution. A power-law implies that small ocoences are
extremely common, whereas large instances aremeglyerare. This regularity or 'law' is sometimesoaleferred to as
Zipf and sometimes Pareto. To add to the confusienlaws alternately refer to ranked and unrardistiibutions.
Here we show that all three terms, Zipf, power-lamngl Pareto, can refer to the same thing, and b@adily move
from the ranked to the unranked distributions agldte their exponents.

A line appears on a log-log plot. One hears shoUtZipf!","power-law!","Pareto"! Well, which onesiit? The answer is that
it's quite possibly all three. Let's try to disergbe some of the confusion surrounding these nsatted then tie it all back
neatly together.

All three terms are used to describe phenomenaenhage events are rare, but small ones quite comFar example, there
are few large earthquakes but many small ones eTdrera few mega-cities, but many small towns. & hee few words,
such as 'and' and 'the' that occur very frequebtlymany which occur rarely.

Zipf's law usually refers to the 'sizg'of an occurrence of an event relative to it's nranReorge Kingsley Zipf, a Harvard
linguistics professor, sought to determine thee'sif the 3rd or 8th or 100th most common worde3igre denotes the
frequency of use of the word in English text, antithe length of the word itself. Zipf's law statkat the size of the r'th
largest occurrence of the event is inversely pridggaal to it's rank:

y~ r'b, with b close to unity.

Pareto was interested in the distribution of incomstead of asking what tmeh largest income is, he asked how many
people have an income greater tlhaRareto's lavis given in terms of the cumulative distributiamétion (CDF), i.e. the
number of events larger tharis an inverse power of

P[X>Xx] ~ xK.
It states that there are a few multi-billionaidest most people make only a modest income.

What is usually called power law distributiortells us not how many people had an income gréladeix, but the number of
people whose income is exacilylt is simply the probability distribution functig PDF) associated with the CDF given by
Pareto's Law. This means that

P[X = x] ~ x kD) = x-2,

That is the exponent of the power law distributgon 1+k (wherek is the Pareto distribution shape parameter).
SeeAppendix 1for discussion of Pareto and power-law.

Although the literature surrounding both the ZipfidPareto distributions is vast, there are veryd@ect connections made
between Zipf and Pareto, and when they exist,kyisvay of a vague reference [1] or an overly caogdéd mathematical
analysis[2,3]. Here | show a simple and directtieteship between the two by walking through an eglenusing real data.

Recently, attention has turned to the internet twvsimems to display quite a number of pola@r-distributions: the number
visits to a site [4], the number of pages withigita [5], and the number of links to a page [6]néme a few. My example
will be the distribution of visits to web sites.

Figure 1a below shows the distribution of AOL useisits to various sites on a December day in 1@8¥% can observe that
a few sites get upward of 2000 visitors, whereastraites got only a few visits (70,000 sites regedionly a single visit). Tt
distribution is so extreme that if the full rangassshown on the axes, the curve would be a pdrfsicape. Figure 1b below
shows the same plot, but on a log-log scale theegdistribution shows itself to be linear. Thishe tharacteristic signature
of a power-law.
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Fig. 1aLinear scale plot of the distribution of users agpo Fig. 1b Log-log scale plot of the distribution of usersar
web sites web sites

Lety = number of sites that were visited owusers.

In a power-law we havg= C x2 which means thdbg(y) = log(C) - alog(x)
So a power-law with exponeatis seen as a straight line with slopeon a log-log plot.

Now one just might be tempted to fit the curve ig.Bb to a line to extract the expona. A word of caution is in order
here. The tail end of the distribution in Fig. $bmessy' - there are only a few sites with a lakgaber of visitors. For
example, the most popular site, Yahoo.com, hade#29%isitors, but the next most popular site hal¢ 86,528. Because
there are so few data points in that range, sirfiipliyg a straight line to the data in Fig. 1b géva slope that is too shallow (a
=1.17). To get a proper fit, we need to bin theadiato exponentially wider bins (they will appeaenly spaced on a log

scale) as shown in Fig. 2a. A clean linear relatiom now extends over 4 decades (f)1Bers vs. the earlier 2 decades: (1-
100) users. We are now able to extract the coergmbnent = 2.07. Rather than binning logarithmically, one can éast

look at the Pareto cumulative distributiBpX > x] ~ x K to obtain a goad fit. The tail naturally smooths m the
cumulative distribution and no data is ‘obscursdhahe logarithmic binning procedure. Fitting thenulative distribution,
we find an exponent &f = 2.16, quite close to the=2.07 exponent found with the logarithmic binning proaees(both fits
are shown in Figure 2b).
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Fig. 2aBinned distribution of users to sites Fig. 2b Cumulative distribution of users to sites

So far we have only looked at the power-law PDBit&s visits. In order to see Zipf's law, we neeglot the number of
visitors to each site against its rank. Fig. 3 sheuch a plot for the same data set of AOL uskesvisits. The relationship
nearly linear on a log-log plot, and the slopeliswhich makes it Zipf. In order for there to befpetly linear relationship,
the most popular sites would have to be slightlgytar, and the less popular sites slightly more enaus. It might be
worthwhile to fit this distribution with alternatéistributions, such as the stretched exponent]abf7parabolic fractal [8]. In
any case, most would happy to call this rank distion Zipf, and we will call it Zipf here as well.
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At first, it appears that we have discovered twaasate power laws, one produced by ranking thebkes, the other by
looking at the frequency distribution. Some papen make the mistake of saying so [9]. But theigeg formulate the
rank distribution in the proper way to see its direlationship to the Pareto. The phrase "ttelargest city has
inhabitants” is equivalent to sayingcities haven or more inhabitants". This is exactly the defmitiof the Pareto
distribution, except the x and y axes are flippatthereas for Zipfr is on the x-axis and is on the y-axis, for Paretojs on
the y-axis andh is on the x-axis. Simply inverting the axes, wetbat if the rank exponent ks i.e.

n~r®in Zipf, (n =income, r = rank of person with income n)

then the Pareto exponentli so that

r~ n'l/b (n = income, r = number of people whose inconreas higher)

(SeeAppendix 2for details).

Of course, since the power-law distribution is ecli derivative of Pareto's Law, its exponent iggiby(1+1/b). This also
implies that any process generating an exact 2ipk distribution must have a strictly power-law pability density
function. As demonstrated with the AOL data, in tlaseb = 1, the power-law exponeat= 2.

Finally, instead of touting two separate power-laws have confirmed that they are different waykoking at the same
thing.
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Appendix 1: The Pareto Distribution
The Pareto distribution gives the probability thaterson's income is greater than or equal to xsaexpressed as [10]:
PriX>=x] = (m/x)k, m>0,k>0,x>=m,

wherem represents a minimum income.
As a consequence, the CDF

PrIX <x] =1- (m/x)K
and the PDF is
(k1)

Py(X) =km m>0,k>0,x>=m

Note that the shape parameter of the Pareto diivilh k, equalsa-1, wherea is the power law slope. Also note that éox 2
there is no finite mean for the distribution. Presibly because of this, the Pareto distributioroieetimes given wittk > 1,
but thek > 0 definition is more widely used.

Another property, which holds for & not just thosd not giving a finite mean, is that the distributigrsaid to be "scale-
free", or lacking a "characteristic length scalHiis means that no matter what range ohe looks at, the proportion of
small to large events is the same, i.e., the stéplee curve on any section of the log-log plothis same.

Appendix 2: From Zipf's ranked distribution to powerlaw PDFs
Let the slope of the ranked plot be

Then the expected valiigX| ] of therth ranked variabl&; is given by

E[X, ]~ Cl*r'b, C, a normalization constant,

which means that there ar@ariables with expected value greater than orletm@l*r'b:
P[X >= C*rP] =Crr

Changing variables we get:

PIX >=y] ~y (D)

To get the PDF from the CDF, we take the derivatiith respect ty:

Pr[X == y] ~ y'(1+(1/b)) = y'a_

Which gives the desired correspondence betweetwthexponents.

a=1+(1/b)

This tutorial exists only in an online version but sme of the discussion is included in
L.A. Adamic and B.A. Huberman, 'Zipf 's law and the Internet, Glottometrics 3, 2002,143-150




