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Abstract: The structural and other characteristics of the Hoppenot multiple square equation are 
analysed in the context of the modular ring Z4. This equation yields a left-hand-side and a 
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is also used to solve some related problems. 
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1 Introduction 

Hoppenot [2] pointed out that the sum of the squares of (n + 1) consecutive integers, the 
greatest being 2n(n + 1), is equal to the sum of the squares of the next n integers, that is, in 
notational form 
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 (1.1) 

The first of such a series when n = 1 is the Pythagorean triple (3, 4, 5). Thus, the apparent 
blandness of Hoppenot’s observation is misleading as these sums of squares have many 
interesting features, including their structural characteristics, some of which are developed in 
this paper.  

The underlying pedagogical goals here are: 

 knowledge: the conceptual framework of number theory [2];  

 attitudes: the inherent attraction of the elegant [3]; and 

 skills: notation as a tool of thought [4]. 

2 Functional n characteristics  

The initial square on the left-hand-side of Equation (1.1) is given by (n(2n + 1))2 and the sum, 

S, will be 
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the Pyramidal numbers, and 
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2

1
 nnTn  (2.3) 

the Triangular numbers [5, 8, 10]. Some examples are illustrated in Table 1. 
 

N Left-hand side square Right-hand-side-squares 

1 2543 22   2552   
2 365121110 222   3651413 22   
3 203024232221 2222   2030272625 222   
4 72304039383736 22222   723044434241 2222   
5 19855605958575655 222222   198556564636261 22222   
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Table 1. Examples of Hoppenot’s equation 

 Since other Pythagorean triples are embedded within some of the sums, these may be 
reduced by replacing two squares by one (Table 2). Odd integers of the form (4r1 + 1) may also 
be sums of squares so that these may also be replaced.  For example, 

 .254431402561 2222   (2.4) 

 These squares could be substituted into the right-hand-side of the n = 4 square function. 
Note that the first numbers in each of the left-hand side squares, namely, {3, 10, 21, 36, 55, 78, 
105, ...} are elements of the set of coefficients of periodic polynomials [4], and the first 
numbers in each of the right-hand squares constitute the sequence of centred equation numbers, 
namely, {5, 13, 25, 41, 61, 85, 113, ...} [10]. 
 

n Left-hand side square Right-hand-side-squares 

2 2211110 22   221145 22   

3 1454232221 222   145427267 222   

5 

162555958575655

1311959585755
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6 324998382817978 22222   32499908887863913 222222   
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111110109107106105 222222
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Table 2. Embedding Pythagorean triples from Table 1 
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The distribution of odd and even squares depends on n (Table 3). 

n Number of odd terms Number of even terms 

Left-hand side squares 

odd ½ (n + 1) ½ (n + 1) 
even ½ n ½ n + 1 

Right-hand side squares 

odd ½ (n + 1) ½ (n – 1) 
even ½ n ½ n 

Table 3. Distribution of even and odd squares 

3 Right-end-digit (RED) Analysis 

The sum S of the squares always has a factor 5 (cf [9]). This can be illustrated by analysing the 
REDs (which is essentially the same as working in Z10). With 

 )().( ngnfS   (3.1)  

)12)(1()( 6
1  nnnnf  

1)1(12)(  nnng  

the RED of each function is given from n* (where the asterisk indicates the RED) as 
exemplified in Table 4. 

n* (f(n))* (g(n))* S* 

0 5 1 5 
1 1 5 5 
2 5 3 5 
3 4 5 0 
4 0 1 0 
5 5 1 5 
6 1 5 5 
7 0 3 0 
8 4 5 0 
9 5 1 5 

 

Table 4. Right-end-digits (REDs) 

Since the product is always 0 or 5, then 5 will always be a factor of S. This can also be 
proved in Z5: when 
 ),5(mod4,1,0n  (3.2) 
then 
 ),5(mod)12)(1(0 6

1  nnn  (3.3) 

and when 
 ),5(mod3,2n  (3.4) 
then 
 ).5(mod1)1(120  nn  (3.5) 
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4 Difference of squares 

The sum of the difference of squares may be used to simplify the arithmetic; that is, the square 
of each integer may be reduced to simple sums.  For example, the first square when n = 4 is 
given by 

       222222222 374138423943404436   
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 (4.1) 

or 

       222222222 374438433942404136   

 .97959391 2222   (4.2) 

5 Modular ring structure 

Integers may be more finely classified (than just even or odd, prime or composite, and so on) 
by separating them into classes within modular rings [6, 7]. Here, we use the modular ring Z4 
(Table 5), but other modular rings could equally be used. 

f(r) 04r  14 1 r 24 2 r 34 3 r
Row 

Class 40  41  42  43  
0 0 1 2 3 
1 4 5 6 7 
2 8 9 10 11 
3 12 13 14 15 
4 16 17 18 19 
5 20 21 22 23 
6 24 25 26 27 
7 28 29 30 31 

Table 5. Rows of Z4 

 Odd squares always fall in Class 41  and even squares in Class 40 , but the sum S can fall 

in any of the four classes and does so in a regular pattern, 41 41 42 42 43 43 40 40 ... (Table 6); it 

is easy to see from the table how this can be generalised. 
 The squares of integers, N, are well characterised in modular rings [6]: in Z4 squares only 

occur in Classes 40  (even) and 41  (odd). The even integer squares occur in the rows of Table 5 

that are also squares. These rows can be reduced to yield the odd-integer rows except when 
N = 2n when the square categorisation persists. 

 When 3 does not divide odd N, the rows equal 6Qn where  13
2
1  nnQn , the  penta-

gonal numbers, and 
 when 3 divides N, the rows equal (18Tn + 2), Tn, the triangular numbers as in Equation 

(2.3). 
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n Class pattern LHS Class pattern RHS S 
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Table 6. Class patterns of squares from Table 2 

Thus the Hoppenot equation may be broken down structurally to give the basic factors 
which yield the equality of the two sides of the equation. For example, if E represents even 
integers and O represents odd integers, then symbolically for n = 3: 
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where: 

 when 3 does not divide O, ;12414 1
2  nQRO  

 when 3 divides O,  14914 1
2  nTRO . 

Note that when n is odd the leading square is always odd, but when n is even the leading 
square is even.  Consider the numerical example with n = 3: 

 2222222 27262524232221  . (5.2) 

Equation (5.2) can be analysed as 

   24 /
0

/
101  RRRRLHS  (5.3) 

and 

   24 ///
1

//
0

//
1  RRRRHS  (5.4) 

Substituting in the row functions: 

    2661924 /22  nn QbQannLHS  (5.5) 

with n = 3, a = 11, Qn = 22,b = 12, and Qn
/  = 26. 

    261924 //2  nQcmmRHS  (5.6) 

with m = 3, Qn
// = 26, c = 13. 

Since 2,4 and 2 cancel out (in that order), on substitution of the appropriate values, we get 

 110+121+132+144 = 156+169+182 = 507 (5.7) 
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or 

 3  132 = 3  132 (5.8) 

whereas the sum of squares yields 

 7  29 = 7  29 (5.9) 

which has no 3,13 factors. The sum-of-squares pathway is different from the structural 
pathway. Interestingly, the triad {12,13,14] is not a Pythagorean triple. 

6 Final comments 

Modular rings can be useful in analysing essential structures and for providing new approaches 
to old equations [6, 7] as in Table 7. 
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 515 236 rRR   

   4612136 555  rrr  

Table 7. The modular ring 6Z [showing that 6|(n(n+1)(n+2))] 

 Gratitude is expressed to an anonymous referee for taking the trouble to offer some 
constructive suggestions to improve the paper. 

References 

[1] Alfred, U. Consecutive Integers with Equal Sums of Squares. Mathematics Magazine. 
Vol. 35, 1962, 155–164. 

[2] Ball, W. W. R., H. S. M. Coxeter. Mathematical Recreations and Essays. New York: 
Macmillan, 1956. 

[3] Gardner, Howard. Truth, Beauty and Goodness Reframed: Educating for the Virtues in 
the Twenty-First Century. New York: Basic Books, 2011.   

[4] Iverson, Kenneth. Notation as a Tool of Thought. Communications of the ACM. Vol. 23, 
1980, 444–465.  

[5] Knopp, Marvin I. (ed.) Analytic Number Theory: Lecture Notes in Mathematics, Volume 
899. Berlin: Springer, 1981. 

[6] Leyendekkers, J. V., A. G. Shannon, J. M. Rybak. Pattern Recognition: Modular Rings 
and Integer Structure. North Sydney: Raffles KvB Monograph No. 9, 2007.  



15 

[7] Leyendekkers, J. V., A. G. Shannon. Integer Structure Analysis of the Product of 
Adjacent Integers and Euler’s Extension of Fermat’s Last Theorem. Advanced Studies in 
Contemporary Mathematics. Vol. 17, 2008, No. 2: 221–229. 

[8] Leyendekkers, J. V., A. G. Shannon. Modular Rings and the Integer 3. Notes on Number 
Theory & Discrete Mathematics. Vol. 17, 2011, No. 2, 47–51. 

[9] Leyendekkers, J. V., A. G. Shannon. Why 3 and 5 are always factors of primitive 
Pythagorean triples. International Journal of Mathematical Education in Science and 
Technology. Vol. 42, 2011, 102–105. 

[10] Leyendekkers, J.V., A.G. Shannon. The Structure of Geometrical Number Series. Notes 
on Number Theory & Discrete Mathematics. Vol. 17, 2011, No. 3, 31–37. 

[11] Stanton, R.G., D.D. Cowan. Note on a “Square” Functional Equation. S.I.A.M. Review. 
Vol. 12, 1970, 277–279. 


