The sum for n = 0 is obviously ¢ and so is for = 1 which is just the harmonic series which is known to diverge
to infinity.

It appears that such sums, where the binomial reciprocals appear in the denominator, are still very much a research
topic. The problem at hand has several known solutions. | chose the one that appeals to the telescoping
property of the series involved.
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Invoking the concept of partial fractions,
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which allows us to write

n! B n! 1 1

(k+1)(k+2)---(k+n) n-—1 ([k+1]---[k+n—1) a (k+2]---[k+n})'

It follows that
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Bron: http://www.cut-the-knot.org/arithmetic/algebra/BinomialReciprocalsinPascal.shtml



