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1. Introduction 

Let A!l be a RIEMANNian manifold of class c" and G,(s) a geodesic sphere with 
center m c M  and radius s. In  [8] A. GRAY and the second author determined a 
power series expansion for the volume S,(s) of G,(s). The main purpose of [8] is 
t o  try to  characterize EucLIDean space and the rank one symmetric spaces by 
means of the volume function S,(s). For example the authors consider the follow- 
ing conjecture : 

Let M be an n-dhensional RIEMANNian manifold of class c" and suppose that 
for all mc &I and all sufficiently small geodesic spheres the volume S,(s) is the same as 
for EucLIDean space, i.e. X,(s) =c,-,slz-'. Then M i s  locally flat. (Here cnP1  denotes 
the volume of the ( T L -  1)-dimensional unit sphere in P.) 

Similar conjectures are given for the rank one symmetric spaces. These ques- 
tions are answered affirmatively in many important cases but the general problem 
remains open. In  addition B.-Y. CHEN and the second author treated the differ- 
ential geometry of geodesic spheres extensively in [4] and [ 5 ]  where a lot of similar 
problems are studied. In these papers the authors determine mainly properties of 
G,(s) considered as a submanifold of the ambient space iM. 

Next let CT be a topologically embedded curve of finite length L(a) in JI and 
denote by P, a tube ahout (T with sufficiently small radius s to avoid focal points 
of (T. In a subsequent paper [9] a power series expansion is given for the volume 
S,(s) of P, and similar conjectures are studied; for example: 

Let Llf be an  %dimensional RIEMANNian manifold of class c" and suppose that 
for all sufficiently short geodesics 0 the volume S,(s) of all sufficiently small tubes P, 
about (T is  the same as for Eucunean space, i.e. S,(s)=c,-,sn-'L(a). Then &! is 

In contrast with the case of geodesic spheres, the answers are now affirmative 
in all the cases. 

In  addition the authors prove in [9] that  the volume S,(s) of a tube about a n  
arbitrary curve in  EucLIuean space or in a rank one symmetric space does not 
depend on the embedding. It depends in general only on the radius s and the 

locally flat. 

*) Aspirant van het Belgisch Nationaal Fonds voor Wetenschappelijk Onderzoek. 
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length of (I. I n  this way they generalize a remarkable result of WEYL for tubes 
about arbitrary submanifolds in En or 8" [12] to  curves in all rank one symmetric 
spaces. As proved in [ 101 this extension does not longer hold for higher dimensional 
submanifolds, since already for tubes about surfaces in the complex projective 
space the volume does depend on the embedding. 

The technique to attack the volume problem for geodesic spheres is the use of 
normal coordinates and normal vector fields. For tubes one adapts this and uses 
FERMI coordinates and FERMI vector fields (see 191, [lo]). Further the curvature 
function of a curve (I and also the torsion operator of cr, as introduced in [S], are 
used in  an extensive way. Although the volume of a tube in general depends on the 
curvature, i t  is a remarkable property that it is independent of the torsion of (r. An 
elegant way to prove thix is to develop a method which is a generalization of the 
so-called LEDGER technique for geodesic spheres. This method is used to study 
harmonic manifolds (see [2], [ I l l ) .  The key fact to  derive the generalization is a 
nice relatioil which exists between FERMI vector fields and JACOBI vector fields. 
This relation is derived in [9] for curves and in [7] for general submanifolds. After 
giving some pre1:minaries in section 2 we develop this new method in section 3. 
From this we derive a t  once a, power series expansion €or the second fundamental 
form of a tube about (I. It turns out that this form does not depend on the torsion 
of the curve. The same property is valid for the RIEMANN curvature tensor, the  
RICCI tensor and the scalar curvature of the tube. This will be proved by using the  
GAUSS equation in section 4 where we derive power series expansions for these 
tensors and this function. 

We note that t h e  method developed in section 3 provides an alternative way to 
derive a power series expansion for the volume element and hence the volume of 
the tube. 

In  section 5 we determine a power series expansion for the total scalar curva- 
ture of a tube about (I. The main purpose is to  prove characterization theorems 
similar to those using the volume function. Here again we have affirmative an- 
swers except in the three-dimensional case where the situation is more compli- 
cated and related to the GAuss-BoNNETtheorem. Also we mention the result that  
the total scalar curvature for tubes about curves in En and the rank one symmetric 
spaces does not depend on the embedding. This result can be obtained by explicit 
calculations but those become quickly very complicated. There is another elegant 
method to  prove this fact. This is done in [lo] by combining the formulas for the  
volume of a tube and the STEINER formulas for the volume of parallel hypersur- 
faces. These formulas are derived in [l] and the integrated mean curvatures 
appear in a natural way. At the end of this section we give some particular pro- 
perties for 4-dimensional manifolds. 

As stated above it is possible to give the complete power series expansions 
when (I is a curve in En or a rank one symmetric space. I n  section 6 we show how 
this can be done for En, 8% and Hn.  

Finally we note that the method developed in this paper makes i t  possible to 
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consider other functions for the tubes as for example the total mean curvature, 
the norm of the second fundamental form, etc. These and several other notions will 
be considered in [GI. (See also [4], [5] . )  It is also possible to adapt the method t o  
the case of tubes about arbitrary suhmanifolds. We refer to  [lo] where we will 
prove that also in this situation the torsion of the submanifold disappears in most 
of the formulas. 

2. Preliminaries 

Let ( L l f ,  8) be ail n-dimensional RIEMANNian manifold of claw c". Denote hy 
%(M) the c- vector fields on ,If, and let v and R be the  RIEnzANNian connection 
and the curvature operator of X. They are given by 

2 g ( o , I ' , Z ) = S g ( Y ,  Z ) +  J'g(S,Z)-Zg(X, Y ) - g ( X ,  [ Y , Z ] )  
-g(Y, 1x3 21) +g(Z, [AY, YI) , 

R;I.y= " I s , r ' ] - [ b  VJ.1 3 

for X ,  Y ,  ZcS( .If) .  Also let e and t denote the RICCI tensor and the scalar cur\ a- 
ture of ,If. 

To describe the geometry of a RIEnlANXian 
manifold Illin the neighlmrhood of a curve 0 we use FERMIcoordinates. \l'e give 
now some useful definitions and properties. For an extensive treatment we refer 
t o  [9] and t o  [lo] for a generalization t o  arbitrary submanifolds of A RIEMANh'ian 
manifold. 

Definition 3.1. Let { E l ,  . . . , E,) be an orthonormal frame field along a c u r w  
CT: ( a ,  b ) - M  and let m=a(O) be a poiat 011. 0. Assume that 8(t)=Eli,,(t). Then the 
FERMI coordinates ( x , .  . . . , .qt) of ( If, 0) relative to { E l ,  . . . , En) and rn are givm by 

Let 0 : (a, b)  -. -11 be a curve in 

The FERWI coordinates are defined on an  open neighborhood "V of 0. \Ve assume 
always that ?l contains no focal points of 0. 

Definition 2.2. LPt (x,, . . . , x,) be a FERMI coordinate system of (-11, 0) relafizte 
to ( E l ,  . . . , EtJ and m .  T h e n  Xc%(%O) is a FERMI vector fieZd for (M, a) providrd 

n 1  u S = ci , where the ci)s are constants. 
i, 

In  what follows we assume that cr is a, unit speed curve and put  - = A .  Sincck 
j = %  dX, 

2x1 
c i s  in general not a geodesic we have to  take in account the curvature of the cui vLb, 
Also we shall need the torsion opcrator. 
12. 
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Definition 2.3. The curvature of a is the function x given by 
4 4 t ) )  = II V A 4  (4) * 

The torsion operator of u is the linear operator 1 on the space of FERMI vector fields 
given by 

a 1( 

LX=the vector field Y = ci(t) -- such that 
i 4  ax$ 

Y =the normal component of ( vAX) l o ( t )  . 
Further we recall some fundamental properties from [9]. 

tor 1. Then 
Lemma 2.4. Let a be a unit speed curve in M with curvature x and torsion opera- 

i )  there exists a unit vector field U along a such that 

ii) for any two FERMI vector field8 X ,  Y E%(Sa) we have 

iii) for any FERMI vector field X€%(%) we have 

g(U3 A )  (.(t))=O and ( V A A )  lo(t)=x(a(t)) U(.(t)) ; 

d L X ,  Y )  ( 4 t ) )  + A X ,  I Y )  (.(t)) = 0 ; 

(YAW lu(c)=(-xg(X, U )  A+IX) h ( t )  

[ X ,  A ] = O .  
a%a 

3. The Second Fundamental Form for a Tube about a Curve 

The (solid) tube of radius r about a curve a : (a ,  b ) +  M is the set T(o ,  r )  = 
= (exp,(,,x I z€  Mu(c), llzll s r ,  g ( x ,  8( t ) )  = 0 ,  a - d e b } .  Here denotes the 
tangent space of M a t  the point o(t). We assume always that the radius is less than 
the distance of a to its nearest focal point. Further we suppose also that L(a)-==.. 
For small r the set 

P , = { p ~ T ( a , r )  I d ( p ,  o ) = r }  
is a smooth hypersurface which we also call a tube. 

Our main purpose is to study the curvature properties of such a tube. $Ye 
develop a method which is an  immediate extension of that used to treat geodesic 
spheres in a RIEMANNian manifold (see for example [2], [ll]). w e  will use in an 
extensive way JACOBI vector fields and their relation with t,he FERMI vector fields. 

Let p be a point on the tube P, and let y(s)  be the geodesic of M containing p 
and meeting u orthogonally at rn = a(0). We assume that y is parametrized by its 
arc length s and that y(O)=m. Further let (xi, . . . , xn) be a FERMI coordinate 
system of ( M ,  a)  relative to  {Ei, . . . , E,) and m. Hence 

. .  

=E,(t), i=2 ,  . . . , n 
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and we take the basis {Ei, , . . , E,) such that 

“-” denotes the differentiation with respect to t and ‘”” the differentiation with 
respect to s. 

The JACOBI field equation along y is 

Y” + R,,,yy’ = 0 . 
\Ye denote by { e i ,  . . . , e,> the orthonormal frame along y obtained by parallel 
translation of {E,(O)} along y and consider the n - 1 JACOBI vector fields Y,, 
a = 1,  3, . . . , n with the initial conditions 

(3.1) Y,(0)  = E,(O), y;(o) = A’(0) 7 

y:(o) =B,(O) 9 YJO) = 0, 

where a = 3, . . . , n.  Further we put 

YJs)  =Be, . 
This gives rise to  the endomorphiam-valued function s ~ B ( s )  and the endomor- 
phism-valued equation 

B “ + R  0 B=O 

where R denotes the endomorphism of My(*) given by 

R(s)  x = R,,y’ . 
The main tool for our treatment here is the following lemma which gives a nice 

relation between the FERMI vector fields and JACOBI vector fields. The proof is 
given in [9] (see also [7], [lo] for generalizations to arbitrary submanifolds). 

Lemma 3.1. The vector fields 

a 

are JACOBI vector fields along y .  Furthermore they satisfy the initial conditions (3.1). 
From this Lemma 3.1 we obtain 

Lemma 3.2. The endomorphism B(s) satisfies the following initial conditions: 

1 0 . . .  0 - 4 m )  g ( U ,  Ed ( m )  
0 0  

0 0 . . .  
. . .  ( 3 4  

where 1 denotes the matrix (1.J with Lz2 =g - , e2 , a = 3 ,  . . ( :. ) . , n. 

Proof. This follows at once from Lemma 3.1 and Lemma 2.4. 
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Next let w denote the volume form of M (defined locally up to sign) and put 

Then we have 

(3.3) det B(s)  = F 2 t 9 ( s )  = ~ ~ - ~ m ~ . , , ~ ( e x p , s e , )  

(see Lemma 5.1 in [9]). Denote by S the shape operator of the tube P,. Then we 
have 

SY ,  = Y: 
and hence, using Y ,  = Be, : 
(3.4) s= B ' B - ~  . 
Our aim is to give a power series expansion for S. To derive t,his series we will use a 
trick similar to that used by LEDGER to obtain the so-called LEDGER formulas for 
small geodesic spheres in a RIEMANNian manifold (see [2], [ll]). Put  
(3.5) c=sB~B- ' .  
Then we have 
(3.6) sC'= - s ~ R - C ~ + C .  

Taking the n-th derivative of this relation and evaluating it at s = 0 we get 

Further, ushg Lemma 3.1 and (3,4), we get the following initial value for C :  

Now (3.5), (3.7) and (3.8) allow at least theoretically to compute the coefficients in 
t,he power series expansion 

JVe compute c'(o), c"(o), ~ " ' ( 0 )  and C'"(0) 
First, from (3.7) we find 

C'(0) C(0) +C(O) Cl(0) = 0 

and so, by (3.8) we get 

1 o . . . o  
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To determine A we use (3.5) in the form CB =sBr. Take the derivative and evaluate 
at s=o :  

C ( 0 )  B(0) +C(O) B’(0) = B’(0) . 

A = - x(m.) g( u, E’) (m) . 
Using (3.2) we get 

The other coefficients follow then at once from (3.7) and the expressions for 
C(0) and C’(0). We put 

where a ,  8 = 3 ,  . . . , n. 

torsion operator 1. 
An important consequence of these formulas is that  C does not depend on the 

Now we formulate 

Theorem 3.3. Let IJ be a unit speed curve in ill and p =exp,,,su a point of the tube 
P, about a. Then the second fundamental form X of P, at p is given by the following 
expansions: 

SdP) = - xg(U,  u ) + s  (R, , ,ufX*g(U,  4 2 )  i (3.9) 

S 2  + ( v u R l u i u +  2R,ul,wL U )  + 2 ~ 3 g ( u ,  u ) ~ )  
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where a ,  j3=3, . . . , n and u=E2(0) .  Further, the second fundamental form does not 
depend on the torsion of a. 

We conclude this section with some additional remarks. For the mean curvature 
h of the tube P, we have from (3.3), (3.4) and (3.5) since (det B(s))'/det B(s)= 
=tr(B'B-I) (s) : 

1 n - 2  6'(s) 
(3.10) h(s)=-  trace C(s)=-+- 

S s @(a) * 

From this formula and the power series expansion for C we can compute power 
series expansions for the mean curvature h and the volume form w. This last 
series is given in [9]. Our method provides an alternative way to obtain this 
series. Since we shall need it,  we write down the expression: 

Theorem 3.4. We have at p =expmsu : 
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The properties of the mean curvature will be discussed in [6] (see also [4], [S]). 
Further we have 

Theorem 3.8. T h e  volume f o rm (and hence the volume) and the mean  curvature of 
a tube about a curve do not depend o n  the torsion of the curve. 

4. Curvature of Tubes about Curves 

In this section we compute power series expansions for the RIEMANN curvature 
tensor, the RICCI tensor and the scalar curvature of a tube P, about CT. The calcula- 
tions are much more complicated than those for the geodesic spheres as derived in 
[8]. This is due to the special direction defined by the tangent vector of the curve a 
which leads to the consideration of different types of components. We shall need 
two facts which we state first. 

Lemma 4.1. Let (ei, i =  1, . . . , n} be a parallel frame field along y .  T h e n  we 
have at p = y(s) = exp,su : 

The second formula we need is the well-known GAUSS eqzlation which relates 
the RIEMANN curvature tensor R of M with the RIEMANN curvature tensor RT of 
the tube P,. We have 

(4.2) 

where X ,  Y ,  2, W€%(P,). 

R T ( X ,  Y ,  2, W )  = R ( X ,  Y ,  2, W )  + g ( S X ,  2)  g(SY, W )  
- g ( S X ,  W )  g(SY,  2) 

From (3.9), (4.1) and (4.2) we obtain 

Theorem 4.2. Let p = exp,su be a point of a small tube P, about a. T h e  curvature 
tensor of P, does not depend on the torsion of 0 and is given by 

1 
(4.3) ' c , f l (P)={ -; xg(uJ  u, 6 U , + ( R , n , f l - R l , , , 6 n ~ - x 2 g ( U ,  u)2 'up) 

1 1 
+a ~ v R 1 . I S - p R i u l s ~ u p  +-- 3 Rn,,144JY u) ( 
- R I U 1 U 4  u, u)  a,, - xJg( u, u)J a,, 
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where a ,  p, y ,  6 = 3 ,  . . . , n .  
A first contraction gives the RICCI tensor eT of the tube P,. 

Theorem 4.3. Let p = expnzsu be a point of a small tube P, about CY. The RICCI 
teirsor of P, does not depend on the torsion of u and i s  given by 

(4-4) T xg(U,  zc)+eil-(n-l) R ,u ,u- (n-2)  x'g(U, u)' 

1 
f3 euuxg( U ,  u)  - (n - 2) x"g( U ,  u)3 

- (n - 2) d g (  U ,  u)( + o($) (m) ; 1 
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1 1 
3 
4 

-- V,Riuiuxg(Uj U) S a p + ?  Raupux*g(U, u)* 

-5 Riuiu~2g(U, u ) ~  6ap-x4g(u, u)'dab) +()(a3)} (m) 9 

where a ,  ,8=3, . . . , n.  
In the next section we will write down the complete expansion for the Rrcc~ 

tensor of a tube about a curve in a space of constant sectional curvature. It will 
turn out that all the tubes are V-ETNSTEIN hyperswfaces, i.e. the RICCI tenbor has 
only two eigenvalues, one with multiplicity n - 2 and one with multiplicity 1. This 
laet one corresponds to the vector el.  Now we will prove the converse. 

Theorem 4.4. Let &f be an a-dimensional RIEMANNian manifold with I! w 3 .  
Assume that any sufficiently small tube about an arbitrary geodesic a in *If i.3 an 
11-EINSTEIN manifold with respect to the parallel displaced tangent vector of u. Then X 
hm constant sectional curvature. 

Proof .  P, is q-EINsTmNian with the distinguished direction determined try e ,  
i f  and only if 

eT = IgT + pq 8 '1 
where q ( X )  =g"(X,  e 3 '%',P,). This condition implies with (4.4) 
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Since the hypothesis is true for any tube we may interchange /? and 1. Hence 

Now we sum with respect to u and get 

n +2 (n  - 1 ) z  

3 3 z------ e,=(n-l) ell--- R I U , U  * 

Nex we change the role of u and 1. So we get at once that eu, =ell and since u and 1 
are nrhitrary the manifold must be EINsTEINian. Then (4.4) implies 

R.. = O  tkjk 

for any triplet of orthonormal vectors E,(O), Ej(0),  Ek(0) at m. So CARTAN'S lemma 
[3]  gives the required result. 

Finally we derive the power series expansion for the scalar curvature zT of P,. 
This follows immediately from Theorem 4.3 by contraction. 

c w m t u r e  tT of P, does not depend on the torsion of 0 and is given by 

( 4 . 5 )  

Theorem 4.5. Let p = exp,,,su be a point of a small tube P, about a. The scalar 

(n-3)  ( n - 2 )  2 ( n - 2 )  2n 4n-6 
- -  xg(U,  u)+z - -  euu- -  ~ R i u i u  - 

3 3 s 

n f l  n- 1 
- 2  (n-2)  x"(U, u ) ' f s  uRiu1u 

2 6 n -  10 

3 3 f -  euuxg(U, u)---- R,,,,xg(U, u ) - 2  ( n - 2 )  x 3 g ( U ,  u)3 

- 2 (n - 2)  x4g( U ,  u ) 4  + O(s3) (m) . ) I  
In [5] we have considered RTEwANNian manifolds such that the scalar curva- 

ture of a small geodesic sphere is constant on the geodesic sphere and proved that 
this property characterizes harmonic manifolds. 

As in [9] we consider now a kind of harmonicity with respect to geodesics. 
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Definition 4.6. A RIEMANNian manifold i s  said to be scalar curvature harmowic 
with respect to geodesics provided that for any geodesic a the scalar curvature T~ of any 
small tube P, abozct cx depends only on the radizls s. 

Just  as is [9] we can determine all the manifolds which are scalar curvature 
harmonic with respect t o  geodesics. 

Theorem 4.7. A RIEMiANNan manifold A%? is scalar curvature harmonic with 
respect to geodesics if and only if N has constant curvature. 

P r o o f .  That spaces of constant curvature are scalar curvature harmonic with 

Conversely, suppose X is scalar curvature harmonic with respect to geodesics. 
respect to geodesics will follow from equation (6.1).  

Then (4.5) implies 

2n 4n-6 
R l u l u  = - 3 euu - 3 (4.6) 

where u does not depend on u and 1. This implies a t  once that B is EINsTEINian 
(change the role o f  u and 1). Then (4.6) implies that iM has constant sectional 
curvature. 

5. Total Scalar Curvature of Tubes 

Again let a he a sufficiently short unit speed curve in M .  Then the total scalar 
curvature T,(s) of the tube P, is given by 

Tu(s) = J T T ( P )  dP 
P(S) 

Using the volume form Q, (5.1) becomes 

(5.1) 

b 

T,(s) =sn-' J J (?w, J ( e x p , ( p )  du dt 
( 1 )  a 812-2 

where du is the volume element of the (n - Z)-dimensionaI unit sphere in F-'. 
Just as fur the valullle S,,(s) of 2, in [3j, we wiii give it power series expansion 

for T,(s). Therefore we use exactly the same method as used in [8], [9], [lo]. \.Ye 
delete the details. We have 

Theorem 6.1. The total scalar curvature T,(s) of a small tube P, about a curve a 
in M is given by 

where 
n - 3  

6 (n-1) 
A(n)= - { ( n - 4 )  z + ( n + 2 )  pi,) ( 4 t ) )  , 
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nz-9n+2 n Z f 3 n f 1 7  ( n + 1 )  (n+2) B ( n ) = d  { --72 -r2+ - IleIP- ~~ ~- llR1I2 
n2- 1 45 120 

(n-3) ( n - 4 )  (n+6) (n -3 )  lln2-2'7n++42 
20 40 120 

( n - 4 )  (n+1) 

A@,,+- v yir _ _ _ _ _ . ~  z---- A 

7nZf21n-46  n2f3n-558 C QzjRiiij- l i r  e:, Te l l+ - -  180 +- 
36 i , j = 2  

n2+3n+14 
~- 

n"3n f14  
6 " v l e l o -  12 - 

Here c,-? is the volume of the unit sphere Sn-2(1) in En-', i.e. 

It follows from Theorem 4.5 that T,(s) does not depend on the torsion of the 
curve a but in general the curvature of CT does not disappear. In  [9] we showed 
that the volume S,(s) of P, does not depend on the curvature of a when M is flat 
or a rank one symmetric spaco but only depends on the length of a. For En and 
Sn(A) this was already contained in a remarkable result of H. WEYL [ 1  21. He proved 
that the volume of a tube about an arbitrary submanifold in En and Bn(I)  does not 
depend on the embedding but only depends on the intrinsic geometry of the sub- 
manifold. It is shown in [9] that this is still true for curves in the other rank one 
symmetric spaces but i t  fails to be true for other dimensional submanifolds (see 

To prove a similar result for the total scalar curvature T,(s) one may compute 
exp1'c;fely the total scalar curvature. We will do this for S"(I) in section 6. For 
the other rank one symmetric spaces the explicit calculations become quickly 
very complicated. In [ lo]  another method will be developed by considering the 
integrated mean curvatures of a tube .?,. The key argument is that a tube P,,, of 
radius s + r may be considered as a parallel hypersurface of the tube P,. So i t  
remains to give a formula for the volume of parallel hypersurfaces. These complete 
STEINER formulas for E" and the other rank one symmetric spaces are given in 
[ 11. We obtain 

Theorem 5.2. Let P, be a tube about a curve a in EucLIDean space or in a rank 
one symmetric space. Then the total scalar curvature T,(s) of P, does not depend on 
the embedding of a; it depends only on the radius s and the length of 0. 

[lo]) .  
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In what follows we will call E" and the other rank one symmetric spaces the 
model spaces. Next we will characterize these model spaces locally by means of the 
total scalar curvature of small tubes about sufficiently short geodesics. The tech- 
nique is the same as fa- the similar theorems using the volume S,(s) [9]. We refer 
to that paper for more details. Before doing this we f h t  characterize EINSTEIN 
spaces. 

Theorem'5.3. Let 1ki' be an  n-dimensional RIEMANNian manifold (n r 3 )  with the 
property that for all small s and all sufficiently short geodesics u, M has the same 
total scalar curvature functions T J s )  up to order sn-2 as in. an  n-dimensional EIN- 
STEIN manifold M' .  Then M itself is  an  EINSTEIN manifold. 

Proof .  For M' (5.2) reduces to 
b 

a 

Ry comparing the expansion (5.1) for M with (5.3) we obtain that 

for any othonormal basis of iM,. Then (5.4) implies at once that M is an EINSTEIN 
manifold. 

Next we give the other characterization theorems. We will state the theorem in 
general and prove i t  for example when the model space is Sn(;i). For the other 
spares the proof is similar (see [9]). 

Theorem 5.4. Let i%.f be an n-dimensional R I E M A N N i a n  manifold (n >3) with 
adapted holonomy group (as in the model space) and with the property that for all 
small s and all sufficiently short geodesics cr, M has the same total scalar curvature 
functions T,(s) as in an  n-dimensional model space. Then i%! is locally isometric to 
that model space. 

Proof .  We consider &,(A) as model space. First Theorem 5.3 implies that  II!! 
is an EINSTEIN manifold. Using this result i t  follows from (5.2) that the next 
condition is 

(5.5) 

To use this relation in an elegant way we first consider 

B(n) ( M )  = B(n) ( & " ( A ) )  . 

and then average this over Sn-'(l) cs x varies on the unit sphere in M,, i.e. 

A T,(~s) = __ /- T k ( s ) d z .  
cn-i .I 

Sn - I( 1) 
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By using the integration formulas as given in [5], [9] we obtain 

where 

(5.6) @(n)= ~ -~ 7 

A T,(s) = c, -zsn-4 ( ( n  - 3) (n - 2 )  +a@) $2 +/?(n) $4 +o(so)} (m) 

( n - 3 )  ( n - 2 )  
6n 

1 
B(n)=---. - __- ( 5  (n +1)  (n2- 7 n - 6 )  t 2  

360 (n- 1) n (n + 2 )  ( 5 . 7 )  

- 6  (3n3-22n2+.33n-2) d t f 8  ( n + 1 )  (n’-+5n+21) / / p / )?  

- 3  (n+ 1)  ( n + 2 )  ( n + 3 )  p q z }  (m)  . 
So (5.5) implies 

( 5 - 8 )  An) ( M )  = A n )  (fiw 
and from (5.6) we obtain z = T I .  Since M and M’ are both EINSTEIN spaces we have 
also that \ lel \z=\\p’\ \2 and so, from (5.7) and ( 5 . 8 )  we get immediately I\RI\?=\\R’II2. 

2 

n (n- 1)  
Since I(R‘((2= __- t ‘ 2  we arrive at 

which means that 1%’ is a space of constant curvature (see for example [5], [g]). 
Then z =z’ implies a t  once that the sectional curvature is 2. 

In Theorem 5.3 and Theorem 5.4 we consider only the case n > 3 .  The reason 
for this is the following. It will follow from the formulas in the next section that  
T,(s) = 0 for En, s:j(A) ( A > O )  and H:l(A) ( A <  0). This follows also from the GAUSS- 
BONNET theorem. Conversely, suppose that the total scalar curvature T,(s) for all 
P, in a RIEMANNian manifold M with dimension 3 is equal to  zero. Then B(3) = 0 
is equivalent to 

(5.9) v:,t=2C72 I 1  p 11 .  

This does not enable us to conclude that the space has constant curvature. Indeed 
we give a counterexample. Let M be a small geodesic sphere in C P ( , u ) .  It is proved 
in [ 5 ]  that the RICCI tensor of satisfies ~,,n,,= 0 for all XE%(M).  This implies 
that  z is constant and also that O ~ s ~ x x = O  for all XCgR(M). Hence(5.9) is 
satisfied but M is not a space of constant curvature. We do not know if the 
vanishing of the next term in the power series expansion will make it possible to  
give an answer. 

Note that for a 3-dimensional manifold vxexx = 0 is equivalent t o  the condi- 
tion that B(3) should not depend on the curvature x of a. 

Finally we want to mention the special behaviour for 4-dimensional manifolds. 
These manifolds are characterized by the property 

lim T,(s)=a+=O for “one” curve cr , 
8 -0 

13 Math. Sachr. Bd. 103 
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where u is constant. For all other dimensions we have 

lim TJs) = 0 . 
8-0 

In particular we prove 

Theorem 6.6. Let M be an n-dimensional manifold such that for all sufficiently 
small tubes 

T,(s) = uL(a), u =# 0 and cowtant . 
Then M is a 4-dimensional locally fh space. 

Proof .  This folIows at once from (5.2). 
Further we obtain at once the well-known result : 

Corollary 6.6. Let M be a 4-dimensional locally flat manifold. Then all tubes 
of sufficiently small radius about C W T V ~ S  of the same length have the same total scalar 
curvature, i.e. T,(s) = 2c2L(a). 

Theorem 6.7. An n-dimensional RIEMANNian manifold iS a 4-dimensional 
EINSTEIN manifold if and only if 

lim To@) = a  + 0 ,  lim T$)-" s-2=8 , 

u,  /? constants, for all sufficiently small tubes. Moreover M is RICCI flat if /?=O. 

8 -0 8 -0 

6. Some Complete Formulas 

For the flat space and the rank one symmetric spaces i t  is possible to give the 
complete power series expansions. In this section we will give an example. We con- 
sider the space S"(A) with curvature A w O .  For the negative curvature case it 
suffices to change all the trigonometric functions into the corresponding hyper- 
bolic functions. 

For P ( A )  the JACOBI equation can be solved explicitly. By doing this we obtain 
for the FERMI vector fields (see [9]) : 
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Hence 

B(s) = 

From this we arrive with (3.5) at - 
0 . . .  0 

-. -x(m) . __ g(U,  y’) (+ f i t an  f ig 

1 
1 x(m)  g ( U ,  7’) (m) tan f i g  ...[ Vn 0 

f icot  V I S .  . . . .. .. . 0 . .. 
0 0 . . . y i c o t  fit? 

Hence we have from (3.4) 

- x(m) g( U ,  y’) (m) - IT tan f is  

I - - x(m) g (U,  y’) (m)  tan f ig 

u,  p=3, . . . , 1 2 .  

= , 
1 

Vh 
4,b) = 0 
Sap(s)=lljlc0t vis8,p,  

This means that P, is a quasi-umbilical hypersurface [3]. The converse is also 

Next we have from (3.10) or by explicit calculation from B(s) :  
true (see [ S ] ) .  

u , B , y ,  6=3 ,  ..., n .  
13. 
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Contraction gives 

.(m) g ( U ,  7') (m) cot f i S  +vn 
V ~ - x ( r n )  g(U,  7') (m)  tan 1x8 

& ( p ) = ( n - 2 ) A  

eT.(p) = 0 

e&4=A ____ 
sin2 YA s 

x(m) g ( U ,  7') ( m )  - cot Ilns +In { " - 3 _  f l -  __ 

fi- x(m) g (  U ,  y')  (m) tan YA s 
a, ,4= 3, . . . , n. From this i t  followsimmediately that the tube P,isq-EIxSTEINian. 

A second contraction gives the scalar curvature: 

Finally we compute the total scalar curvature. Since 

J g(U,  a) tmm) h = O  , 
s"-2(1) 

we obtain 

This shows that TJs )  is indeed independent of the embedding. Further we have 
T,(6) = 0 for n = 3. 

For H"(A) (A < O )  we have 

and for En we obtain 

T , ( ~ ) = C , - ~  (n-2) (n-3)  d-'L(a) . 
In  the same way we can obtain the formulas for CP"(,a), &P"(Y), Cay F([) 

and their noncompact duals. However the formulas are much more complicated. 
We delete them here (see [6]). 

Note that Z~ may be computed using the formula 
T z = z - 2@22 + h2 - IlSll' 

which is derived directly from the GAUSS equation. Here llS\l denotes the length of 
the second fundamenbl form. 
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