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1. Introduction

Let M be a RiEMaNNian manifold of class C* and G,,(s) & geodesic sphere with
center m¢ M and radius s. In [8] A. GrRAY and the second author determined a
power series expansion for the volume 8S,,(s) of G,,(s). The main purpose of [8] is
to try to characterize EucLIDean space and the rank one symmetric spaces by
means of the volume function S,,(s). For example the authors consider the follow-
ing conjecture:

Let M be an n-dimensional RIEMANNian manifold of class C* and suppose that
for all me¢ M and all sufficiently small geodesic spheres the volume S,,(s) is the same as
for EucLipean space, i.e. S,,(s)=c, _s" . Then M is locally flat. (Here c, _, denotes
the volume of the (n —1)-dimensional unit sphere in £".)

Similar conjectures are given for the rank one symmetric spaces. These ques-
tions are answered affirmatively in many important cases but the general problem
remains open. In addition B.-Y. CHEN and the second author treated the differ-
ential geometry of geodesic spheres extensively in [4] and [5] where a lot of similar
problems are studied. In these papers the authors determine mainly properties of
G,,(s) considered as a submanifold of the ambient space M.

Next let ¢ be a topologically embedded curve of finite length L(o) in A and
denote by P, a tube about ¢ with sufficiently small radius s to avoid focal points
of o. In a subsequent paper [9] a power series expansion is given for the volume
§,(8) of P, and similar conjectures are studied ; for example:

Let M be an n-dimensional RIEMANNian manifold of class C* and suppose that
for all sufficiently short geodesics o the volume S (s) of all sufficiently small tubes P,
about o is the same as for EucLipean space, i.e. Sy(s)=c,_»s" "L(c). Then M is
locally flat.

In contrast with the case of geodesic spheres, the answers are now affirmative
in all the cases.

In addition the authors prove in [9] that the volume S,(s) of a tube about an
arbitrary curve in EucLIDean space or in a rank one symmetric space does not
depend on the embedding. It depends in general only on the radius s and the
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length of o. In this way they generalize a remarkable result of WrYL for tubes
about arbitrary submanifolds in £” or 8" [12] to curves in all rank one symmetric
spaces. As proved in [10] this extension does not longer hold for higher dimensional
submanifolds, since already for tubes about surfaces in the complex projective
space the volume does depend on the embedding.

The technique to attack the volume problem for geodesic spheres is the use of
normal coordinates and normal vector fields. For tubes one adapts this and uses
FERMI coordinates and FERMI vector fields (see {9], [10]). Further the curvature
function of a curve ¢ and also the torsion operator of ¢, as introduced in [9], are
used in an extensive way. Although the volume of a tube in general depends on the
curvature, it is a remarkable property that it is independent of the torsion of 0. An
elegant way to prove this is to develop a method which is a generalization of the
so-called LEDGER technique for geodesic spheres. This method is used to study
harmonic manifolds (see [2], [11]). The key fact to derive the generalization is a
nice relation which exists between FERMI vector fields and JacoBI vector fields.
This relation is derived in [9] for curves and in [7] for general submanifolds. After
giving some prel'minaries in section 2 we develop this new method in section 3.
From this we derive at once a power series expansion for the second fundamental
form of a tube about ¢. It turns out that this form does not depend on the torsion
of the curve. The same property is valid for the RIEMANN curvature tensor, the
Riccr tensor and the scalar curvature of the tube. This will be proved by using the
GAvuss equation in section 4 where we derive power series expansions for these
tensors and this function.

We note that the method developed in section 3 provides an alternative way to
derive a power series expansion for the volume element and hence the volume of
the tube.

In section 5 we determine a power series expansion for the total scalar curva-
ture of a tube about ¢. The main purpose is to prove characterization theorems
similar to those using the volume function. Here again we have affirmative an-
swers except in the three-dimensional case where the situation is more compli-
cated and related to the GAvss-BoNNET theorem. Also we mention the result that
the total scalar curvature for tubes about curves in E" and the rank one symmetric
spaces does not depend on the embedding. This result can be obtained by explicit
calculations but those become quickly very complicated. There is another elegant
method to prove this fact. This is done in [10] by combining the formulas for the
volume of a tube and the STEINER formulas for the volume of parallel hypersur-
faces. These formulas are derived in [1] and the integrated mean curvatures
appear in & natural way. At the end of this section we give some particular pro-
perties for 4-dimensional manifolds.

As stated above it is possible to give the complete power series expansions
when ¢ is a curve in E” or a rank one symmetric space. In section 6 we show how
this can be done for E*, 8" and H".

Finally we note that the method developed in this paper makes it possible to
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consider other functions for the tubes as for example the total mean curvature,
the norm of the second fundamental form, etc. These and several other notions will
be considered in [6]. (See also [4], [5].) It is also possible to adapt the method to
the case of tubes about arbitrary submanifolds. We refer to [10] where we will
prove that also in this situation the torsion of the submanifold disappears in most
of the formulas.

2. Preliminaries

Let (M, g) be an n-dimensional RteMaNNian manifold of class C®. Denote by
X(M) the C= vector fieldson M,and let v and R be the RIEMANNian connection
and the curvature operator of M. They are given by

29(vyY,Z)=Xg(Y,Z)+ Y¢(X,Z)-Zg9(X, Y)—9g(X, [Y, Z])
—-g9(Y,[X,Z)+9(Z,[X, Y]),
Byy=Vixy—[Vy vyl

for X, Y, Z¢%(M). Also let ¢ and 7 denote the Riccr tensor and the scalar curva-
ture of /.

Let o : (a, b)—J1 be a curve in M. To describe the geometry of a RIEMaNNian
manifold M in the neighborhood of a curve ¢ we use FERMI coordinates. We give
now some useful definitions and properties. For an extensive treatment we refer
to [9] and to [10] for a generalization to arbitrary submanifolds of a RtEMaNNian
manifold.

Definition 2.1. Let {£,, ..., E,} be an orthonormal frame field along a curve
o: (a,b)~M and let m=0(0) be a point on o. Assume that ¢(t)=Ei,,. Then the
FERMI coordinates (xy, ..., x,) of (M, o) relativeto {E,, . .., E,} and m are given by

n

x,(expa(,) X GE; fa(t)):t .
-

j=2
n
x; (expa(,) 2 LE; il,(,)):ti, 2=i=n.
=

The FERMI coordinates are defined on an open neighborhood U of 6. We assume
always that ‘U contains no focal points of o.

Definition 2.2. Let (x,, . .., x,) be a FERMI coordinate system of (M, o) relative
to (Ey, ..., E,) and m. Then X cR%(U) is a FERMI vector field for (M, o) provided

]
X =)} ¢;— , where the c's are constants.
i 0% o
In what follows we assume that o is & unit speed curve and put b = 4. Since
Ty
o is in general not a geodesic we have to take in account the curvature of the curve.
Also we shall need the forsion opcrator.

12*
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Definition 2.3. The curvature of o is the function x given by
#(o(t))=]|v 44| (a(t)) .
The torsion operator of o is the linear operator | on the space of FERMI vector fields
given by
* 7
1 X =the vector field Y = 3] c,(t) Py such that
i=2 T
Y [, =the normal component of (7 4X) |,q) -
Further we recall some fundamental properties from [9].
Lemma 2.4. Let o be a unit speed curve in M with curvature » and torsion opera-
tor | . Then
i) there exists a unit vector field U along o such that
g(U, A) (U(t)) =0 and (v44) [a(z)=“(°'(t)) U(G(t)) 5
i) for any two FERMTI vector fields X, Y ¢ %(°U) we have
9(LX, Y)(a(t)) +9(X, 1Y) (a(t))=0;
iii) for any FERMI vector field X ¢ %(°U) we have
(VaX) loy={—29(X, U) A+ | X} lo
and
[X, A]=0.

3. The Second Fundamental Form for a Tube about a Curve

The (solid) tube of radius r about a curve o: (a, b)—~ M is the set T'(a, r)=
={expyp | € My, || =7, gz, 6(t))=0, a<t<b}. Here M,, denotes the
tangent space of M at the point o(t). We assume always that the radius is less than
the distance of ¢ to its nearest focal point. Further we suppose also that L(o)<eo.
For small r the set

P,={peT(o,r)|d(p, o)=r}
is & smooth hypersurface which we also call a tube.

Our main purpose is to study the curvature properties of such a tube. We
develop a method which is an immediate extension of that used to treat geodesic
spheres in a RieMANNian manifold (see for example [2], [11]). We will use in an
extensive way JACOBI vector fields and their relation with the FERMI vector fields.

Let p be a point on the tube P, and let y(s) be the geodesic of M containing p
and meeting ¢ orthogonally at m =0(0). We assume that y is parametrized by its

arc length s and that p(0)=m. Further let (x4, ..., #,) be a FERMI coordinate
gystem of (M, o) relative to {£,, ..., E,} and m. Hence
7
) == | =E(t)=A4 |pq
a(t) oz, ot 1(8) l 1)
- =E|(t), ‘i=2, S
0% o
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and we take the basis {¥,, . .., E,} such that

oy =K,(0)=9'(0) ;

a(0)

. denotes the differentiation with respect to ¢ and “’”’ the differentiation with
respect to s.
The Jacosr field equation along y is
Y”—I—RV:Y‘}/:O .

We denote by {ey, ..., ¢,} the orthonormal frame along y obtained by parallel
translation of {Z,(0)} along y and consider the n—1 JAcCOBI vector fields Y,

a=1,3,...,n with the initial conditions

(3.1) Y(0)=E,(0), Y\(0)=4(0),
Y,(0)=0, Y,(0)=E,(0)

where x=3, ..., n. Further we put
Y,(8)=Be,.

This gives rise to the endomorphism-valued function s—>B(s) and the endomor-
phism-valued equation

B"+Ro B=0
where R denotes the endomorphism of M, given by
R(s)z=R,,y" .
The main tool for our treatment here is the following lemma which gives a nice

relation between the FERMI vector fields and JacoBr vector fields. The proof is
given in [9] (see also [7], [10] for generalizations to arbitrary submanifolds).

Lemma 3.1. The vector fields
0 0 o | 0 f
‘ sl

3 e 0 s

- } y T ) 8 - 1
8yl aylyy  OFlye %y, iy

are JACOBI vector fields along y. Furthermore they satisfy the initial conditions (3.1).
From this Lemma 3.1 we obtain

Lemma 3.2. The endomorphism B(s) satisfies the following initial conditions:

10 ... 0 —x(m) g{U, Ey) (m) | 0
(3.2) B(0)= R B'(0)= = 1L(m) I
o0 ... O
. , 0
where | denotes the matriz (| ,) with | , =g<_]_ po eg>, «=3,...,n.

Proof. This follows at once from Lemma 3.1 and Lemma 2.4.
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Next let  denote the volume form of M (defined locally up to sign) and put

7] 0
Wy..y =0 6x1, o v ey 3xn .

Then we have
(3.3) det B(s) =8""20(8) =" 2w,..,,(6XP,,8€,)

(see Lemma 5.1 in [9]). Denote by S the shape operator of the tube P,. Then we
have

SY,=Y,
and hence, using Y,=Be,:
(3.4) S=B'B~'.

Our aim is to give a power series expansion for 8. To derive this series we will use a
trick similar to that used by LEDGER to obtain the so-called LEDGER formulas for
small geodesic spheres in a RiEMANNian manifold (see [2], [11]). Put

(3.5) C=sB'B™'.
Then we have
(3.6) sO'=—s2R—-C24C .

Taking the n-th derivative of this relation and evaluating it at s=0 we get

n
(3.7) (n—1) C™(0)= —n (n—1) B*"D(0)— }) (2) 0®(0) 0*~8(0), neNy.
Further, using Lemma 3.1 and (3.4), we get the following initial value for C'
0:0...0
(3.8) co)={9
. I
0

Now (3.5), (3.7) and (8.8) allow at least theoretically to compute the coefficients in
the power series expansion

0(s)= jl:' C®(0) &-.
K=o k!

We compute C'(0), G"'(0), C'"'(0) and C¥(0)
First, from (3.7) we find
C"(0) C(0)+C(0) C'(0)=0
and so, by (3.8) we get
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To determine A we use (3.5) in the form C B=sB’. Take the derivative and evaluate
at s=0:

C'(0) B(0)+C(0) B'(0)=B’'(0) .
Using (3.2) we get
A= —u(m) g(U, E) (m) .

The other coefficients follow then at once from (3.7) and the expressions for
C(0) and C'(0). We put

o @ \
Rijkl -R3 a 'a*—' and V”=V o 9

oz; 5y 0% ox; 02

fm i j, k,1=1,2,..., n Then we have (note that C is symmetric):
”( )=—2(Ryy+x%(U, E,)?) (m) ,
G (0) —'R12a2( )

' 2
Ouﬂ(0)= T3 Rzmz(m) 5
(i) 0;’1'(0) =—3(VsRpap+2Rpaxg(U, Ey) +2:3g(U, E,)3) (m) ,
Cle (0) =—(2V 3R 300+ Ryyeoxg(U, Ey)) (m) ,
Yy 3
Cop (0)=— 9 V o Ryopa(m) ;

e 9 ) 1 n D)
(i) C49(0)=—4 <V§231212+2RI212+§ D) Bl +2V R 0xg(U, B,)
6=3
+8Ry,1x%g(U, Ey)+6xg(U, Ez)/‘) (m),

C(0)=— (3 V32 Rz + 3R Rysyg +a§ Biy5R08:
+ 2V o0 Rgoug(U, Ey)+ 4Ry ,x%g(U, Ez)z) (m),

C‘“)(O)=—(12V R + R, .R +8 )"R R )( m),
ep 5 ¥ 2222 12a24% 5282 «2624 8262

where o, =3, ..., n.

An important consequence of these formulas is that € does not depend on the
torsion operator | .

Now we formulate

Theorem 3.3. Let o be a unit speed curve in M and p =exp,su a point of the tube
P, about 0. Then the second fundamental form S of P, at p is given by the following
expansions:

(3.9) Sy(p)= *{KQ(U, u)+8 (Ryyyy +229(U, u)?)

$2
+ 3 (VuRiuru+ 2Ry 2g(U, w) + 2x3g(U, u)3)
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83 -
+ 12 (2 v iuRlulu-*- 4R12u1u+ ZR%WW

é=3

+ 4 vuRluiuxg(U’ u) + 16R1u1u”2g(U’ ’“’)2
+12x4g(U, u)4>+0(s4)} (m) ;

82

8 (2 vuRiuau+ Rluau"g(U’ ’ll/))

- S
Slz(.p) = {E Biyout

83 "
+ E; (3 v?mRiuau + 3R1u1uR1uzu + 2 RiuduRaudu
6=3

+ 2 VuRluauxg(U! u) + 4R1uau”29(U: u)2>+ 0(84)} ('m) H

8 82

af g Rauﬂu —=v uRauﬁu

1
t;aﬂ(la)::'{l; 0 4

83 n
- ﬁ) (18 viuRauﬂu + gRiuauRluﬂu +4 2 RauduRﬂuou> + 0(84)} (m),
=3

where «, =3, . .., n and w=E,(0). Further, the second fundamental form does not
depend on the torsion of o.

We conclude this section with some additional remarks. For the mean curvature
% of the tube P, we have from (3.8), (3.4) and (8.5) since (det B(s))'/det B(s)=
=tr(B'B~1) (s):
(810)  h(s)= trace C(s) =" 2+ 2 )
s 8 &(s)
From this formula and the power series expansion for C we can compute power
series expansions for the mean curvature % and the volume form . This last
series is given in [9]. Our method provides an alternative way to obtain this
geries. Since we shall need it, we write down the expression:

Theorem 3.4. We have at p =exp,su:

9

B11)  0u(p)=1—sxlm) g(U, ) (m) 5 (Quu+ 2Riura) (m)

83
- 12 ( V wQuy + vuRiuw - 2@uu“g(U’ u)) (’m)
84 2 2 2
~ 360 9V 4uluu— 90+ 6V wuliur—200,, By,

n n
+10R},,,+12 Y R}, +2 } R:

aufiy
a=3 a,f=3

—30 quuu"g(U’ u)> (m) + 0(85) :
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The properties of the mean curvature will be discussed in [6] (see also [4], [5]).
Further we have

Theorem 3.5. The volume form (and hence the volume) and the mean curvature of
a tube about a curve do not depend on the torsion of the curve.

4. Curvature of Tubes about Curves

In this section we compute power series expansions for the RIEMANN curvature
tensor, the Ricor tensor and the scalar curvature of a tube P, about . The calcula-
tions are much more complicated than those for the geodesic spheres as derived in
[8]. This is due to the special direction defined by the tangent vector of the curve ¢
which leads to the consideration of different types of components. We shall need
two facts which we state first.

Lemma 4.1, Let {e;, i=1, ..., n} be a parallel frame field along y. Then we
have at p=y(s)=exp,su:

32
Rijkl(p):{Rijkl+8 vuRijkl+§v3uRijkl+' . } (m),

82
(4.1) 0i(P)=105+8V 05+ Vi e .o f (M),
2

82
T(P)={'€+SV,,1+§ vir+.. } (m) .

The second formula we need is the well-known GAUSs equation which relates
the RIEMANN curvature tensor R of M with the RIEMANN curvature tensor RY of
the tube P,. We have

(4.2) RYX,Y,Z, W)=R(X, Y. Z, W)+¢(8SX, Z) g(SY, W)
—g9(8X, W) g(8Y, Z)

where X, Y, Z, Wc%(P,).
From (3.9), (4.1) and (4.2) we obtain

Theorem 4.2. Let p =exp,,su be a point of a small tube P, about o. The curvature
tensor of P, does not depend on the torsion of o and is given by

1 .
(4.3) Rl s(p)= { 5 #g(U, u) 8,5+ ( Riarp— Brurubus— 229(U, u)2 8,5)
1 1 _
+s vuRiaiﬂ - ”2_ vuRiuiuaa,ﬂ +'§ Rzuﬁu”g( U’ ’l.l/)
— Byy29(U, u) 61[3— w3g(U, u)3 61}9)

1 1 1
+82 <§V124uR‘.a1ﬂ+ 3 RiuiuRwﬁu_I BrvciBrups
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1

vuuRluluaaﬁ—_ Rlulu af 2 lelu 2
6 12,4

1 1

+ 1 V uBougurg (U, u) — 3 V o B1atug(U, u) 8,4
1 : 4 2 (T7 9

+'?; Rauﬂu"zg(Ur u)Q— 'g Rlulu”“g([’ ’ u)' 61;9

—x'g(U, u) %) + 0(33)} (m) 3

1 1
Riaﬁ/( ) = {Rlaﬂy - 2 Rluﬂuaay + '2' Riuyuamﬂ
i 1
+s| v uRiaﬁy - g v uRluﬂuéay + ‘5 v uRiuyuaaﬂ
1 1
—é Riuﬁu’{g(Us %) 5111} +'6 mexg(U, %) 6«,3
1

1 . 1
+s2 (5 vnsz:laﬂy +€ RiuBuRau)'u - E ‘RWWR““ﬁ“

1 1
- gvuuRiuﬂuazy+ vuuRiuyu af RiuluRluﬂu

1
+- 8 RluiuRiuyu af 2 RluluRﬂuluaa/
id 1
+ éz ;,é: Rlulu‘Ryuluaaﬁ - 12 v uRiuﬂu%g( U’ u) 6:7
1 1 ‘ ,
+E v uRiuyu“g( U, u) 6&19 - E Riuﬁu"zg( U, u)? 6¢y
1
+ g Ruupg(U, w)? 6¢ﬂ)+0<83>} (m)
1
BB =15 0= 085) B~ (R B
1
+ Rauyuaﬂﬁ - Rauduaﬂy) +38 ( v uRa,Byd - Z -R/Suouéay

1 1 1
+— Rm&u‘sﬁy -V uRauyuaﬂd +-v uRﬁuyuaau)
4 4

4

1 1 1
+352 (E v i“Rmﬂyd + 9 RauwRﬂuau ) RméuRﬂW“

i 1
- 16 viuRﬁuGu 617 +‘1'6 v?mRﬂuyuaaﬁ 10 —V uu-Razuyu‘s
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1, 1
+ o V uw Bousudpy — 9 0 By iusudey
+ RiuﬂuRiuyubao RiuauRluyuaﬂé + RluauRiudu By
1
4 5 2/ RﬁuluRéuAua + YT Rﬁulu yuluaua
i=

1 1
—47' 2 PuuluRyuluaﬂd'f_ 2 RauZuRéu}.uaﬁy>+0(3‘;)} (m) ,

where «, 8, v,8=3, ..., n.
A first contraction gives the Riccr tensor o7 of the tube P,.

Theorem 4.3. Let p=exp,su be a point of a small tube P, about o. The Riccr
tensor of P, does not depend on the torsion of ¢ and is given by

—2
@ ofip) ={ — =g (U, )+ oy — (11 Ry — (n—2) (U, 0)2

n 3n—5
+s (vu911—§ vu-R:Iuiu'_ 3" ) Riulu”g(Us %)

+ g, u) = (n—2) ig(U, u>3>

3
1 . n+1 1 n—1
+s2 (E v'izlel_f’ﬁ' vtzmﬁiuiu'f"g R1uiu9uu"“3— Rfulu
n+ 1 1 4n—-5
- 2 RIulu"" vu@uu"g(U u)_”——__ v Riuiu"g(U u)
12~ 4 12
1 Y , dn-—=1 )
+§ Quu""g(U’ u)"_ -? . Riulu’ﬂg(U’ u)~
—(n—2) x%g(U, %)"+0(83)} (m) ;
r n—1 n n—3 rr
Qia(p): le_—é— R1uau+s vu@ivz_g vuRwau_ 6 Rluauzg(o’u)
A1, n+ 1 1 3n—5
+s2 (2 YV uule — 8 VuuRiuau+ 6 QuuRluau ) '_22 - RjuluRiuau
n+1 n—3
- 24 AYJ’ Riu}.uRauAu 12“ vuRiuauxg(U’ u)

— Byyu®g(U, u)2+0(83)} (m) ;
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where «, =3, ..

In the next section we will write down the complete expansion for the Ricer
tensor of a tube about a curve in a space of constant sectional curvature. It will
turn out that all the tubes are y- EINSTEIN hypersurfaces, i.e. the Ricct tensor has
only two eigenvalues, one with multiplicity n — 2 and one with multiplicity 1. This
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n—3

1 n—1
Qaz[}(p) :{?" 6:,8_; ”g(U’ u) ézﬁ +Q¢p— —.3—' Rauﬂu

1 2
_g Quuaaﬂ_'g Riuwaaﬂ_ x}g(U, u)? 5aﬂ

7 ' 1 1
+s ( Vu@aﬁ - Z v uRauﬂu - Z vuguu 6aﬂ - Z vuRiuluauﬁ
1 | |
5 Buptg(U, 0)= R0, 0) 8= 9(U, 0 8

1 n+1 1
+s2 ( v iu@aﬂ -V ;mRauﬂu + 5 QuuRauBu

2 10
2 n+1 n+1 *

+ “9‘ Rlulu Rau.ﬂu - “2? RiuzuRiuﬂu - —4_5—" l_yg’ RamluRﬁuJ.u

1 1 1
- 16 v iu Quuaaﬂ - '1_5' v iu Riuiuaaﬁ - g R?uiuaaﬁ

2 1 1
—E 2 R;wluéaﬁ - E 2 -Rluuubaﬂ + Z vuRauﬂu"g ( U ) u)

A=3 Ape=3

1 i
-3 7 wBiuiug(U, u) 6aﬁ+g R usu®g(U, w)?

—g Riusu®g(U, u)2 8,5 — x'g(U, u)"’éaﬂ) + 0(83)} (m) ,

., M.

last one corresponds to the vector e;. Now we will prove the converse.

Theorem 4.4, Let M be an n-dimensional RIEMANNian manifold with n=>3.
Assume that any sufficiently small tube about an arbitrary geodesic o in M is an
7-EINSTEIN manifold with respect to the parallel displaced tangent vector of o. Then M

has constant sectional curvature.

Proof. P, is n-ErnstEINian with the distinguished direction determined hy e,
if and only if

" =2g"+un®n

where 5(X)=g%(X, e;), X ¢<%(P,). This condition implies with (4.4)

n—1 n—1
3

- Rmuau =0z T Rﬁuﬁu .
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Since the hypothesis is true for any tube we may interchange 8 and 1. Hence

n—1 n—

¢y~ Bawn=e11="— B -

Now we sum with respect to « and get

n +2 (n—1)*
T_T Ouu=(n—1) 911"—3_— Rluiu .
Nex we change the role of w and 1. So we get at once that g, =p4; and since % and 1
are arbitrary the manifold must be ErnsTEINian. Then (4.4) implies

-Rikjlc =0

for any triplet of orthonormal vectors E,(0), E;(0), E,(0) at m. So CARTAN’s lemma,
[3] gives the required result.

Finally we derive the power series expansion for the scalar curvature v7 of P,.
This follows immediately from Theorem 4.3 by contraction.

Theorem 4.5. Let p=exp,su be a point of a small tube P, about o. The scalar
curvature t¥ of P, does not depend on the torsion of o and is given by

(4.5) 2 ) xg(U u)+7_”§‘ Oui— — 5 Biuru

7 (n 3) (n—2) 2 (n— 2) 2n 4n—6
T (p)—{ )
8 )

) ) n+1 n—1
-2 (n-—-2) x-’g(U, u)2+8 <Vu‘r— —--2- : Vugw-—T VuR,.um

&

2
2 e, 1)~ 2222 Ruvuig(U, ) =2 (0=2) (U, )

1, n+2 , 2n—1
+ 82 <2 VWT—T ¥ wuQuu— e 7 auBiut + Ouu
+‘—1—R _(in—_’? R? _4_12:_2 =
9 1utuCuu 9 futu 15 ~, tudu
—-277;:5 1“‘2'3 R,lmm—}-l YV oQug(U, u) — 4?‘66 i VL iurn2g (U, %)

2 8n —
+3 Cuu 'g(U u)"_'—"g— Riulu%"g(U u)

—2 (n—2) x%g(U )")+0(83)}( )

In [5] we have considered RTEMANNian manifolds such that the scalar curva-
ture of a small geodesic sphere is constant on the geodesic sphere and proved that
this property characterizes harmonic manifolds.

Asin [9] we consider now a kind of harmonicity with respect to geodesics.
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Definition 4.6. A Riemaxnian manifold is said to be scalar curvature harmonic
with respect to geodesics provided that for any geodesic o the scalar curvature 17 of any
small tube P, about o depends only on the radius s.

Just as is [9] we can determine all the manifolds which are scalar curvature
harmonic with respect to geodesics.

Theorem 4.7. A RiemiannNan manifold M is scalar curvature harmonic with
respect to geodesics if and only if M has constant curvature.

Proof. That spaces of constant curvature are scalar curvature harmonic with
respect to geodesics will follow from equation (6.1).

Conversely, suppose M is scalar curvature harmonic with respect to geodesics.
Then (4.5) implies

2n 4n —6

(4.6) T—"'3" Quu""—g— Biyu=2
where « does not depend on # and 1. This implies at once that M is EINsTEINIan
(change the role of % and 1). Then (4.6) implies that M has constant sectional
curvature.

5. Total Sealar Curvature of Tubes

Again let ¢ be a sufficiently short unit speed curve in M. Then the total scalar
curvature T (s) of the tube P, is given by
(5.1) T,(8)= [7"(p)dp.

20)
Using the volume form w, (5.1) becomes
b
T()=s""" [ [ (tTw,.,) (expygsu) du dt
a Sn—‘.’(l)

where du is the volume element of the (n — 2)-dimensional unit sphere in E*~*.

Just as for the volume S,{5) of P, in [9], we will give a power series expansion
for 7' (s). Therefore we use exactly the same method as used in [8], [9], [10]. We
delete the details. We have

Theorem b.1. The total scalar curvature T (s) of a small tube P, about a curve ¢
in M is given by

b
(5.2) To(8)=0p_98""* [ {(n—3) (n—2)+ A(n) s2+ B(n) 4+ 0(s6)} dt

where

A(n)= 6ol {(n—4) T+ (n+2) g1} (a®) ,
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1 —9n42 'n2+3n+17 (rn+1) (n+2
Buy=—- AT e T e &)
n2—1 72 120
(n—3) (n—4) (n+6) (n—3) 11n2—27n+142 )
u— — - —_——— e AQ“. — -\ 11'[
20 40 120
(n—4) (n+1) 7n2+21n — 46 2 n?+3n—58
A i Mt }
36 011 0 B Qz} 1 120 (11
Tn?+21n +194 (n+1) n+2)
T a0 Ve Ty 24 Riy;
n2+3n+62 (n+1) (n+2) » —3n+8
+ 2 91‘6 T a~ 2 ‘Rl’l]k s xLTT
0 ’7’k 2 6
n2 +3n+14 n2+3n+14
- Vilip— = =%V gougp (at)) -
6 12
Here c,_, is the volume of the unit sphere 8"~ (1) in E*~!, i.e.
n— 1
-1 n—1 n+1
—— (=t where |-—— 1=I'{ —]).
- n—1 ' 2 2
5 )

It follows from Theorem 4.5 that 7 ,(s) does not depend on the torsion of the
curve ¢ but in general the curvature of o does not disappear. In [9] we showed
that the volume 8,(s) of P, does not depend on the curvature of o when M is flat
or a rank one symmetric space but only depends on the length of . For E" and
S5"(A) this was already contained in a remarkable result of H. WeyL [12]. He proved
that the volume of & tube about an arbitrary submanifold in £” and 8*(4) does not
depend on the embedding but only depends on the intrinsic geometry of the sub-
manifold. It is shown in [9] that this is still true for curves in the other rank one
symmetric spaces but it fails to be true for other dimensional submanifolds (see
[10]).

To prove a similar result for the total scalar curvature 7 (s) one may compute
explcitely the total scalar curvature. We will do this for 8"(4) in section 6. For
the other rank one symmetric spaces the explicit calculations become quickly
very complicated. In [10] another method will be developed by considering the
integrated mean curvatures of a tube P,. The key argument is that a tube P, , of
radius s+7 may be considered as a parallel hypersurface of the tube P,. So it
remains to give a formula for the volume of parallel hypersurfaces. These complete
STEINER formulas for E™ and the other rank one symmetric spaces are given in
[1]. We obtain

Theorem 5.2. Let P, be a tube about a curve o in EUcLIDean space or in a rank
one symmetric space. Then the total scalar curvature T (s) of P, does not depend on
the embedding of o ; it depends only on the radius s and the length of o.



192 Gheysens/Vanhecke, Total Scalar Curvature

In what follows we will call £* and the other rank one symmetric spaces the
model spaces. Next we will characterize these model spaces locally by means of the
total scalar curvature of small tubes about sufficiently short geodesics. The tech-
nique js the same as for the similar theorems using the volume S_(s) [9]. We refer
to that paper for more details. Before doing this we first characterize EINSTEIN
spaces.

Theorem 5.3, Let M be an n-dimensional RIEMANNian manifold (n > 3) with the
property that for all small s and all sufficiently short geodesics o, M has the same
total scalar curvature functions T (s) up to order "~ as in an n-dimensional EIn-
STEIN manifold M’. Then M itself is an EINSTEIN manifold.

Proof. For M’ (5.2) reduces to
b

(63)  T(e)=cpss""" [ (n—3) (n—2) (s—ﬁln) (a()) dt+0(s" .

o

-

By comparing the expansion (5.1) for M with (5.3) we obtain that

’

5.4 n-3 4 9) oyt = (n—3 2)~
(5.4) n——I{(n_ )T+ (n+2) o4y =(n—3) (n— );

for any othonormal basis of M, . Then (5.4) implies at once that M is an EINSTEIN
manifold. '

Next we give the other characterization theorems. We will state the theorem in
general and prove it for example when the model space is 8"(4). For the other
gpaces the proof is similar (see [9]).

Theorem 5.4. Let M be an n-dimensional RIEMANNian manifold (n=>3) with
adapted holonomy group (as in the model space) and with the property that for all
small 8 and all sufficiently short geodesics o, M has the same total scalar curvature
functions T (s) as in an n-dimensional model space. Then M is locally isometric to
that model space.

Proof. We consider §”(1) as model space. First Theorem 5.3 implies that M
is an EinsTeIN manifold. Using this result it follows from (5.2) that the next
condition is

(5.5) B(n) (M)=B(n) (§"(2)) -

To use this relation in an elegant way we first consider

ein pien Lol8)
Tf"(s)"diﬂo L(o)’

and then average this over 8"~ '(1) &8 & varies on the unit sphere in M,,, i.e.

x=¢(0)

t
AT, (s) = [ T (s)dx .
n—1 o

Su—i(l)
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By using the integration formulas as given in [5], [9] we obtain
AT, (8) =, _p5"" {(n—3) (n—2) +a(n) 2 +B(n) 55 +0(s5)} (m)

where
(5.6) alny= "V m=2)
on
(5.7) B(n) : {5 (n+1) (n2—Tn—6) 72

T 360 (n—1)n (n +2)
—6 (3n3—22p2+33n —2) A7 +8 (n +1) (n>+5n +21) ||g|I2
=3 (n+1) (n+2) (n+3) B} (m) .
So (5.5) implies
(5.8) Bn) (M)=p(n) (S"(2))
and from (5.6) we obtain r=17’". Since M and M’ are both EINSTEIN spaces we have
also that [p||2={l¢’l|2 and so, from (5.7) and (5.8) we get immediately ||R||2=| R'||2.

Since || R'||2= g 7’2 we arrive at

n (n—

2
1B)>= —
n(n—1)
which means that M is a space of constant curvature (see for example [5], [9]).
Then v=1’ implies at once that the sectional curvature is 4.

In Theorem 5.3 and Theorem 5.4 we consider only the case n>3. The reason
for this is the following, It will follow from the formulas in the next section that
T.(s)=0 for E3, S3(1) (A=>0) and H3(4) (A <0). This follows also from the Gauss-
BoxNET theorem. Conversely, suppose that the total scalar curvature 7 (s) for all
P, in a RiEmaNNian manifold M with dimension 3 is equal to zero. Then B(3)=0
is equivalent to

(5.9) VHT=2V10q; -

This does not enable us to conclude that the space has constant curvature. Indeed
we give a counterexample. Let M be a small geodesic sphere in C P2(u). It is proved
in [5] that the Riccr tensor of M satisfies v yoyx =0 for all X ¢ €(M). This implies
that 7 is constant and also that Vigory=0 for all Xc%(M). Hence (5.9) is
satisfied but M is not a space of constant curvature. We do not know if the
vanishing of the next term in the power series expansion will make it possible to
give an answer,

Note that for a 3-dimensional manifold v yp, ;=0 is equivalent to the condi-
tion that B(3) should not depend on the curvature x of ¢.

Finally we want to mention the special behaviour for 4-dimensional manifolds.
These manifolds are characterized by the property

lim 7' (s)=a=+0 for “one” curve o,
80

13 Math, Nachr. Bd. 103
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where o is constant. For all other dimensions we have

lim T (s)=0.

a-0
In particular we prove

Theorem 5.5. Let M be an n-dimensional manifold such that for all sufficiently
small tubes

T, 8)=aL{c), a«a+0 and constant.
Then M is a 4-dimensional locally flat space.

Proof. This follows at once from (5.2).
Further we obtain at once the well-known result:

Corollary 5.6. Let M be a 4-dimensional locally flat manifold. Then all tubes
of sufficiently small radius about curves of the same length have the same total scalar
curvature, i.e. T (8) =2¢c,L(a).

Theorem 5.7. An n-dimensional RiEMANNian manifold is a 4-dimensional
EiNSTEIN manifold if and only if

lim T (s)=a+0, lim T®-*g-2=28,
80 80

a, B constants, for all sufficiently small tubes. Moreover M is Ricor flat if §=0.

6. Some Complete Formulas

For the flat space and the rank one symmetric spaces it is possible to give the
complete power series expansions. In this section we will give an example. We con-
sider the space S"(A) with curvature A>0. For the negative curvature case it
suffices to change all the trigonometric functions into the corresponding hyper-
bolic functions.

For §™(2) the JACOBI equation can be solved explicitly. By doing this we obtain
for the FERMI vector fields (see [9]):

0 - sin st sin VI.S ”
—— 1 =dcosVis— x(m) g(U, ') (m)} ey———=— 3] | (m)e,,
Z4 1 ip(8) { VE ! V)s ¢§ o2
" ='V,(s)=e s
0%y lya) ’
) sin Y2 s
-— = el’ a=3,...,n-
axa »(8) VA 8
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Hence -
-
VR gm0 0 . 0
snn V}.s sin Vis
0 0
T Lay(m) 7
B(s)= A in J2.
SIHVV 8_]_42(7”') 0 ?.1.1171__9 . 0
sm Vﬂ.s . . o sin st
0 0 B
] 5 Lt i
From this we arrive with (3.5) at
om0, y) Vit Vs ,
1———-1; »(m) g(U, y') (m) tan ﬁs
C(s)=s Va
0 VIcot st 9
_ 0 0 V). cot V}.s

Hence we have from (3.4)

—x(m) g(U, ') (m)— Y2 tan Vis
- VLE #(m) g(U. y') (m) tan Vi
Sia(s) =

S,As):VZcot sté‘,ﬁ, o, f=8,...,n

This means that P, is a quasi-umbilical hypersurface [3]. The converse is also
true (see [6]).
Next we have from (3.10) or by explicit calculation from B(s):

sin V_s
Va

Sy4(s)=

w;..,(exp,sy’'(0)) = (cos As—

U, sm]/_s)
#(m) g(U, y') (m )( Vis

Further we compute the curvature of P,. Using the GAUSS equation we obtain

x(m) g(U, y') (m) cot VA s +VI)
A—w(m) g(U, ') (m) tan Vis

Rﬂm(ip) =4A (1 -
'Rlz;ﬂy 2'7) —0
a - 61 a _6a 6 ’
el D sm2V 4085 — Oz003,)

“:ﬂ’716:31 s ey
13*
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Contraction gives

x(m) g(U, y') (m) cot Vis +Vz‘)

T p)=(m—2)A (1= =
eulp)=n=2) ( Va—x(m) g(U, ¥') (m) tan Vis

oL(p)=0,

om(p)=2 {

sin? J2s Vi—x(m) g(U, ¥') (m) tan ]/Is
a, §=38, ..., n. From thig it followsimmediately that the tube P,is n-EINSTEINian.
A second contraction gives the scalar curvature:

61 p)=monalzr TSy MmUY m oot Vis 42
sin? Yas ﬁ—x(m) g(U, y') (m) tan Vas

Finally we compute the total scalar curvature. Since

[ 9(U,w) (m) du=0,

Sﬂ—?u)

n—3 x(m) g(U, 9") (m) cot Vis +VI}
+1 of

we obtain
sin Vas\" ™" -
T,(s) =¢, 5 (n—2) (n—3) = (cos Vi s) L(o) .

This shows that 7' (s) is indeed independent of the embedding. Further we have
T (s)=0 for n=38.
For H*(A) (A <0) we have

. T n—4
T (s)=c,_, (n—2) (n—3) (smhv_—“) (cosh ¥ —4s) L(s) ,

V-2
and for £ we obtain
T (8)=Cp_s (n—2) (n—3) 8" *L(0) .

In the same way we can obtain the formulas for CP"(u), QP"(v), Cay P2({)
and their noncompact duals. However the formulas are much more complicated.
We delete them here (see [6]).

Note that 7 may be computed using the formula

o =7~ 20+ 2~ S

which is derived directly from the Gauss equation. Here ||S|| denotes the length of
the second fundamental form.
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