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1 The circle constant
The Tau Manifesto is dedicated to one of the most important numbers in
mathematics, perhaps the most important: the circle constant relating the
circumference of a circle to its linear dimension. For millennia, the circle
has been considered the most perfect of shapes, and the circle constant cap-
tures the geometry of the circle in a single number. Of course, the traditional
choice for the circle constant is π—but, as mathematician Bob Palais notes
in his delightful article “π Is Wrong!”,1 π is wrong. It’s time to set things
right.

1.1 An immodest proposal
We begin repairing the damage wrought by π by first understanding the
notorious number itself. The traditional definition for the circle constant
sets π (pi) equal to the ratio of a circle’s circumference to its diameter:2

π ≡ C

D
= 3.14159265 . . .

1Palais, Robert. “π Is Wrong!”, The Mathematical Intelligencer, Volume 23, Number 3, 2001, pp. 7–8.
Many of the arguments in The Tau Manifesto are based on or are inspired by “π Is Wrong!”. It is available
online at http://bit.ly/pi-is-wrong.

2The symbol ≡ means “is defined as”.
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Figure 1: The strange symbol for the circle constant from “π Is Wrong!”.

The number π has many remarkable properties—among other things, it is
irrational and indeed transcendental—and its presence in mathematical for-
mulas is widespread.

It should be obvious that π is not “wrong” in the sense of being factually
incorrect; the number π is perfectly well-defined, and it has all the prop-
erties normally ascribed to it by mathematicians. When we say that “π is
wrong”, we mean that π is a confusing and unnatural choice for the circle
constant. In particular, since a circle is defined as the set of points a fixed
distance—the radius—from a given point, a more natural definition for the
circle constant uses r in place of D:

circle constant ≡ C

r
.

Because the diameter of a circle is twice its radius, this number is numeri-
cally equal to 2π. Like π, it is transcendental and hence irrational, and (as
we’ll see in Section 2) its use in mathematics is similarly widespread.

In “π Is Wrong!”, Bob Palais argues persuasively in favor of the second
of these two definitions for the circle constant, and in my view he deserves
principal credit for identifying this issue and bringing it to a broad audi-
ence. He calls the true circle constant “one turn”, and he also introduces a
new symbol to represent it (Figure 1). As we’ll see, the description is pre-
scient, but unfortunately the symbol is rather strange, and (as discussed in
Section 4) it seems unlikely to gain wide adoption.

The Tau Manifesto is dedicated to the proposition that the proper re-
sponse to “π is wrong” is “No, really.” And the true circle constant de-
serves a proper name. As you may have guessed by now, The Tau Manifesto
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Figure 2: The Google logo on March 14 (3/14), 2010 (“Pi Day”).

proposes that this name should be the Greek letter τ (tau):

τ ≡ C

r
= 6.283185307179586 . . .

Throughout the rest of this manifesto, we will see that the number τ is the
correct choice, and we will show through usage (Section 2 and Section 3)
and by direct argumentation (Section 4) that the letter τ is a natural choice
as well.

1.2 A powerful enemy
Before proceeding with the demonstration that τ is the natural choice for
the circle constant, let us first acknowledge what we are up against—for
there is a powerful conspiracy, centuries old, determined to propagate pro-π
propaganda. Entire books are written extolling the virtues of π. (I mean,
books!) And irrational devotion to π has spread even to the highest levels of
geekdom; for example, on “Pi Day” 2010 Google changed its logo to honor
π (Figure 2).

Meanwhile, some people memorize dozens, hundreds, even thousands
of digits of this mystical number. What kind of sad sack memorizes even 40
digits of π (Figure 3)?3

3The video in Figure 3 (available at http://vimeo.com/12914981) is an excerpt from a lecture given by
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Figure 3: Michael Hartl proves Matt Groening wrong by reciting π to 40
decimal places.

Truly, proponents of τ face a mighty opponent. And yet, we have a
powerful ally—for the truth is on our side.

2 The number tau
We saw in Section 1.1 that the number τ can also be written as 2π. As
noted in “π Is Wrong!”, it is therefore of great interest to discover that the
combination 2π occurs with astonishing frequency throughout mathematics.
For example, consider integrals over all space in polar coordinates:∫ 2π

0

∫ ∞
0

f(r, θ) r dr dθ.

Dr. Sarah Greenwald, a professor of mathematics at Appalachian State University. Dr. Greenwald uses math
references from The Simpsons and Futurama to engage her students’ interest and to help them get over their
math anxiety. She is also the maintainer of the Futurama Math Page.

4

http://en.wikipedia.org/wiki/Matt_Groening
http://mathsci.appstate.edu/~sjg/
http://www.appstate.edu/
http://www.futuramamath.com/


The upper limit of the θ integration is always 2π. The same factor appears
in the definition of the Gaussian (normal) distribution,

1√
2πσ

e−
(x−µ)2
2σ2 ,

and again in the Fourier transform,

f(x) =

∫ ∞
−∞

F (k) e2πikx dk

F (k) =

∫ ∞
−∞

f(x) e−2πikx dx.

It recurs in Cauchy’s integral formula,

f(a) =
1

2πi

∮
γ

f(z)

z − a
dz,

in the nth roots of unity,

zn = 1⇒ z = e2πi/n,

and in the values of the Riemann zeta function for positive even integers:4

ζ(2n) =
∞∑
k=1

1

k2n
=

Bn

2(2n)!
(2π)2n. n = 1, 2, 3, . . .

These formulas are not cherry-picked—crack open your favorite physics or
mathematics text and try it yourself. There are many more examples, and
the conclusion is clear: there is something special about 2π.

To get to the bottom of this mystery, we must return to first principles
by considering the nature of circles, and especially the nature of angles.
Although it’s likely that much of this material will be familiar, it pays to
revisit it, for this is where the true understanding of τ begins.

4Here Bn is the nth Bernoulli number.
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Figure 4: An angle θ with two concentric circles.

2.1 Circles and angles
There is an intimate relationship between circles and angles, as shown in
Figure 4. Since the concentric circles in Figure 4 have different radii, the
lines in the figure cut off different lengths of arc (or arc lengths), but the
angle θ (theta) is the same in each case. In other words, the size of the
angle does not depend on the radius of the circle used to define the arc. The
principal task of angle measurement is to create a system that captures this
radius-invariance.

Perhaps the most elementary angle system is degrees, which breaks a
circle into 360 equal parts. One result of this system is the set of special
angles (familiar to students of trigonometry) shown in Figure 5.

A more fundamental system of angle measure involves a direct compar-
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Figure 5: Some special angles, in degrees.

ison of the arc length s with the radius r. Although the lengths in Figure 4
differ, the arc length grows in proportion to the radius, so the ratio of the arc
length to the radius is the same in each case:

s ∝ r ⇒ s1
r1

=
s2
r2
.

This suggests the following definition of radian angle measure:

θ ≡ s

r
.

This definition has the required property of radius-invariance, and since both
s and r have units of length, radians are dimensionless by construction. The
use of radian angle measure leads to succinct and elegant formulas through-
out mathematics; for example, the usual formula for the derivative of sin θ
is true only when θ is expressed in radians:

d

dθ
sin θ = cos θ. (true only when θ is in radians)
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Figure 6: Some special angles, in π-radians.

Naturally, the special angles in Figure 5 can be expressed in radians, and
when you took high-school trigonometry you probably memorized the spe-
cial values shown in Figure 6. (I call this system of measure π-radians to
emphasize that they are written in terms of π.)

Now, a moment’s reflection shows that the so-called “special” angles
are just particularly simple rational fractions of a full circle, as shown in
Figure 7. This suggests revisiting the definition of radian angle measure,
rewriting the arc length s in terms of the fraction f of the full circumfer-
ence C, i.e., s = fC:

θ =
s

r
=
fC

r
= f

(
C

r

)
≡ fτ.

Notice how naturally τ falls out of this analysis. If you are a believer in π, I
fear that the resulting diagram of special angles—shown in Figure 8—will
shake your faith to its very core.
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Figure 7: The “special” angles are fractions of a full circle.
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0, τ

Figure 8: Some special angles, in radians.
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Although there are many other arguments in τ ’s favor, Figure 8 may
be the most striking. We also see from Figure 8 the genius of Bob Palais’
identification of the circle constant as “one turn”: τ is the radian angle mea-
sure for one turn of a circle. Moreover, note that with τ there is nothing to
memorize: a twelfth of a turn is τ/12, an eighth of a turn is τ/8, and so on.
Using τ gives us the best of both worlds by combining conceptual clarity
with all the concrete benefits of radians; the abstract meaning of, say, τ/12
is obvious, but it is also just a number:

a twelfth of a turn =
τ

12
≈ 6.283185

12
= 0.5235988.

Finally, by comparing Figure 6 with Figure 8, we see where those pesky
factors of 2π come from: one turn of a circle is 1τ , but 2π. Numerically
they are equal, but conceptually they are quite distinct.

2.1.1 The ramifications

The unnecessary factors of 2 arising from the use of π are annoying enough
by themselves, but far more serious is their tendency to cancel when divided
by any even number. The absurd results, such as a half π for a quarter
turn, obscure the underlying relationship between angle measure and the
circle constant. To those who maintain that it “doesn’t matter” whether we
use π or τ when teaching trigonometry, I simply ask you to view Figure 6,
Figure 7, and Figure 8 through the eyes of a child. You will see that, from
the perspective of a beginner, using π instead of τ is a pedagogical disaster.

2.2 The circle functions
Although radian angle measure provides some of the most compelling ar-
guments for the true circle constant, it’s worth comparing the virtues of π
and τ in some other contexts as well. We begin by considering the impor-
tant elementary functions sin θ and cos θ. Known as the “circle functions”
because they give the coordinates of a point on the unit circle (i.e., a circle
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θ

(cos θ, sin θ)

Figure 9: The circle functions are coordinates on the unit circle.
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Figure 10: Important points for sin θ in terms of the period T .

with radius 1), sine and cosine are the fundamental functions of trigonome-
try (Figure 9).

Let’s examine the graphs of the circle functions to better understand their
behavior.5 You’ll notice from Figure 10 and Figure 11 that both functions
are periodic with period T . As shown in Figure 10, the sine function sin θ
starts at zero, reaches a maximum at a quarter period, passes through zero at
a half period, reaches a minimum at three-quarters of a period, and returns
to zero after one full period. Meanwhile, the cosine function cos θ starts at
a maximum, has a minimum at a half period, and passes through zero at
one-quarter and three-quarters of a period (Figure 11). For reference, both
figures show the value of θ (in radians) at each special point.

Of course, since sine and cosine both go through one full cycle during
one turn of the circle, we have T = τ ; i.e., the circle functions have periods
equal to the circle constant. As a result, the “special” values of θ are utterly
natural: a quarter-period is τ/4, a half-period is τ/2, etc. In fact, when mak-
ing Figure 10, at one point I found myself wondering about the numerical
value of θ for the zero of the sine function. Since the zero occurs after half a

5These graphs were produced with the help of Wolfram|Alpha.
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Figure 11: Important points for cos θ in terms of the period T .

period, and since τ ≈ 6.28, a quick mental calculation led to the following
result:

θzero =
τ

2
≈ 3.14.

That’s right: I was astonished to discover that I had already forgotten that
τ/2 is sometimes called “π”. Perhaps this even happened to you just now.
Welcome to my world.

2.3 Euler’s identity
I would be remiss in this manifesto not to address Euler’s identity, some-
times called “the most beautiful equation in mathematics”. This identity
involves complex exponentiation, which is deeply connected both to the cir-
cle functions and to the geometry of the circle itself.

Depending on the route chosen, the following equation can either be
proved as a theorem or taken as a definition; either way, it is quite remark-
able:

eiθ = cos θ + i sin θ.
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Known as Euler’s formula (after Leonhard Euler), this equation relates an
exponential with imaginary argument to the circle functions sine and cosine
and to the imaginary unit i. Although justifying Euler’s formula is beyond
the scope of this manifesto, its provenance is above suspicion, and its im-
portance is beyond dispute.

Evaluating Euler’s formula at θ = τ yields Euler’s identity:6

eiτ = 1.

In words, this equation makes the following fundamental observation:

The complex exponential of the circle constant is unity.

Geometrically, multiplying by eiθ corresponds to rotating a complex number
by an angle θ in the complex plane, which suggests a second interpretation
of Euler’s identity:

A rotation by one turn is 1.

Since the number 1 is the multiplicative identity, the geometric meaning of
eiτ = 1 is that rotating a point in the complex plane by one turn simply
returns it to its original position.

As in the case of radian angle measure, we see how natural the associ-
ation is between τ and one turn of a circle. Indeed, the identification of τ
with “one turn” makes Euler’s identity sound almost like a tautology.7

2.3.1 Not the most beautiful equation

Of course, the traditional form of Euler’s identity is written in terms of π
instead of τ . To derive it, we start by evaluating Euler’s formula at θ = π,
which yields

eiπ = −1.

6Here I’m implicitly defining Euler’s identity to be the complex exponential of the circle constant, rather
than defining it to be the complex exponential of any particular number. If we choose τ as the circle constant,
we obtain the identity shown. As we’ll see momentarily, this is not the traditional form of the identity, which
of course involves π, but the version with τ is the most mathematically meaningful statement of the identity,
so I believe it deserves the name.

7Technically, all mathematical theorems are tautologies, but let’s not be so pedantic.
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But that minus sign is so ugly that the formula is almost always rearranged
immediately, giving the following “beautiful” equation:

eiπ + 1 = 0.

At this point, the expositor usually makes some grandiose statement about
how Euler’s identity relates 0, 1, e, i, and π—sometimes called the “five
most important numbers in mathematics”. It’s remarkable how many people
complain that Euler’s identity with τ relates only four of those five. Fine:

eiτ = 1 + 0.

(In fact, since i sin τ = 0, the 0 was already there.) This formula, with-
out rearrangement, actually does relate the five most important numbers in
mathematics: 0, 1, e, i, and τ .

2.3.2 Eulerian identities

Since you can add zero anywhere in any equation, the introduction of 0 into
the formula eiτ = 1 + 0 is a somewhat tongue-in-cheek counterpoint to
eiπ + 1 = 0, but the identity eiπ = −1 does have a more serious point to
make. Let’s see what happens when we rewrite it in terms of τ :

eiτ/2 = −1.

Geometrically, this says that a rotation by half a turn is the same as multi-
plying by −1. And indeed this is the case: under a rotation of τ/2 radians,
the complex number z = a + ib gets mapped to −a − ib, which is in fact
just −1 · z.

Written in terms of τ , we see that the “original” form of Euler’s iden-
tity has a transparent geometric meaning that it lacks when written in terms
of π. (Of course, eiπ = −1 can be interpreted as a rotation by π radians,
but the near-universal rearrangement to form eiπ + 1 = 0 shows how using
π distracts from the identity’s natural geometric meaning.) The quarter-
angle identities have similar geometric interpretations: eiτ/4 = i says that a
quarter turn in the complex plane is the same as multiplication by i, while
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Rotation angle Eulerian identity
0 ei·0 = 1

τ/4 eiτ/4 = i

τ/2 eiτ/2 = −1
3τ/4 ei·(3τ/4) = −i
τ eiτ = 1

Table 1: Eulerian identities for half, quarter, and full rotations.

ei·(3τ/4) = −i says that three-quarters of a turn is the same as multiplica-
tion by −i. A summary of these results, which we might reasonably call
Eulerian identities, appears in Table 1.

We can take this analysis a step further by noting that, for any angle θ,
eiθ can be interpreted as a point lying on the unit circle in the complex plane.
Since the complex plane identifies the horizontal axis with the real part of
the number and the vertical axis with the imaginary part, Euler’s formula
tells us that eiθ corresponds to the coordinates (cos θ, sin θ). Plugging in the
values of the “special” angles from Figure 8 then gives the points shown
in Table 2, and plotting these points in the complex plane yields Figure 12.
A comparison of Figure 12 with Figure 8 quickly dispels any doubts about
which choice of circle constant better reveals the relationship between Eu-
ler’s formula and the geometry of the circle.

3 Circular area: the coup de grâce
If you arrived here as a π believer, you must by now be questioning your
faith. τ is so natural, its meaning so transparent—is there no example where
π shines through in all its radiant glory? A memory stirs—yes, there is such
a formula—it is the formula for circular area! Behold:

A = πr2.

We see here π, unadorned, in one of the most important equations in mathematics—
a formula first proved by Archimedes himself. Order is restored! And yet,
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Polar form Rectangular form Coordinates
eiθ cos θ + i sin θ (cos θ, sin θ)
ei·0 1 (1, 0)

eiτ/12
√
3
2 + 1

2 i (
√
3
2 ,

1
2 )

eiτ/8 1√
2
+ 1√

2
i ( 1√

2
, 1√

2
)

eiτ/6 1
2 +

√
3
2 i ( 12 ,

√
3
2 )

eiτ/4 i (0, 1)

eiτ/3 − 1
2 +

√
3
2 i (− 1

2 ,
√
3
2 )

eiτ/2 −1 (−1, 0)
ei·(3τ/4) −i (0,−1)
eiτ 1 (1, 0)

Table 2: Complex exponentials of the special angles from Figure 8.

ei·0, eiτ
eiτ/2

ei·(3τ/4)

eiτ/4

eiτ/3 eiτ/6

eiτ/8

eiτ/12

Figure 12: Complex exponentials of some special angles, plotted in the
complex plane.
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the name of this section sounds ominous. . . If this equation is π’s crowning
glory, how can it also be the coup de grâce?

3.1 Quadratic forms
Let us examine this paragon of π, A = πr2. We notice that it involves the
diameter—no, wait, the radius—raised to the second power. This makes it
a simple quadratic form. Such forms arise in many contexts; as a physicist,
my favorite examples come from the elementary physics curriculum. We
will now consider several in turn.

3.1.1 Falling in a uniform gravitational field

Galileo Galilei found that the velocity of an object falling in a uniform grav-
itational field is proportional to the time fallen:

v ∝ t.

The constant of proportionality is the gravitational acceleration g:

v = gt.

Since velocity is the derivative of position, we can calculate the distance
fallen by integration:

y =

∫
v dt =

∫ t

0

gt dt = 1
2gt

2.

3.1.2 Potential energy in a linear spring

Robert Hooke found that the external force required to stretch a spring is
proportional to the distance stretched:

F ∝ x.
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The constant of proportionality is the spring constant k:8

F = kx.

The potential energy in the spring is then equal to the work done by the
external force:

U =

∫
F dx =

∫ x

0

kx dx = 1
2kx

2.

3.1.3 Energy of motion

Isaac Newton found that the force on an object is proportional to its accel-
eration:

F ∝ a.

The constant of proportionality is the mass m:

F = ma.

The energy of motion, or kinetic energy, is equal to the total work done in
accelerating the mass to velocity v:

K =

∫
F dx =

∫
madx =

∫
m
dv

dt
dx =

∫
m
dx

dt
dv =

∫ v

0

mv dv = 1
2mv

2.

3.2 A sense of foreboding
Having seen several examples of simple quadratic forms in physics, you
may by now have a sense of foreboding as we return to the geometry of the
circle. This feeling is justified.

As seen in Figure 13, the area of a circle can be calculated by breaking
it down into circular rings of length C and width dr, where the area of each
ring is C dr:

dA = C dr.

8You may have seen this written as F = −kx. In this case, F refers to the force exerted by the spring.
By Newton’s third law, the external force discussed above is the negative of the spring force.
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r
dr

dA = C dr

Figure 13: Breaking down a circle into rings.
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Quantity Symbol Expression
Distance fallen y 1

2gt
2

Spring energy U 1
2kx

2

Kinetic energy K 1
2mv

2

Circular area A 1
2τ r

2

Table 3: Some common quadratic forms.

Now, the circumference of a circle is proportional to its radius:

C ∝ r.

The constant of proportionality is τ :

C = τ r.

The area of the circle is then the integral over all rings:

A =

∫
dA =

∫ r

0

C dr =

∫ r

0

τ r dr = 1
2τ r

2.

If you were still a π partisan at the beginning of this section, your head
has now exploded. For we see that even in this case, where π supposedly
shines, in fact there is a missing factor of 2. Indeed, the original proof by
Archimedes shows not that the area of a circle is πr2, but that it is equal to
the area of a right triangle with base C and height r. Applying the formula
for triangular area then gives

A = 1
2bh = 1

2Cr = 1
2τ r

2.

There is simply no avoiding that factor of a half (Table 3).

3.2.1 Quod erat demonstrandum

We set out in this manifesto to show that τ is the true circle constant. Since
the formula for circular area was just about the last, best argument that π
had going for it, I’m going to go out on a limb here and say: Q.E.D.
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4 Conflict and resistance
Despite the definitive demonstration of the superiority of τ , there are never-
theless many who oppose it, both as notation and as number. In this section,
we address the concerns of those who accept the value but not the letter.
We then rebut some of the many arguments marshaled against C/r itself,
including the so-called “Pi Manifesto” that defends the primacy of π. In
this context, we’ll discuss the rather advanced subject of the volume of a
hypersphere (Section 5.1), which augments and amplifies the arguments in
Section 3 on circular area.

4.1 One turn
The true test of any notation is usage; having seen τ used throughout this
manifesto, you may already be convinced that it serves its role well. But for
a constant as fundamental as τ it would be nice to have some deeper reasons
for our choice. Why not α, for example, or ω? What’s so great about τ?

There are two main reasons to use τ for the circle constant. The first
is that τ visually resembles π: after centuries of use, the association of π
with the circle constant is unavoidable, and using τ feeds on this association
instead of fighting it. (Indeed, the horizontal line in each letter suggests
that we interpret the “legs” as denominators, so that π has two legs in its
denominator, while τ has only one. Seen this way, the relationship τ = 2π
is perfectly natural.)9 The second reason is that τ corresponds to one turn
of a circle, and you may have noticed that “τ” and “turn” both start with
a “t” sound. This was the original motivation for the choice of τ , and it is
not a coincidence: the root of the English word “turn” is the Greek word for
“lathe”, tornos—or, as the Greeks would put it,

τ óρνoς.

Since the original launch of The Tau Manifesto, I have learned that Pe-
ter Harremoës independently proposed using τ to “π Is Wrong!” author

9Thanks to Tau Manifesto reader Jim Porter for pointing out this interpretation.
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Bob Palais in 2010, John Fisher proposed τ in a Usenet post in 2004, and
Joseph Lindenberg anticipated both the argument and the symbol more than
twenty years before! (Lindenberg has included both his original typewritten
manuscript and a large number of other arguments at his site Tau Before It
Was Cool.) Dr. Harremoës has emphasized the importance of a point first
made in Section 1.1: using τ gives the circle constant a name. Since τ is
an ordinary Greek letter, people encountering it for the first time can pro-
nounce it immediately. Moreover, unlike calling the circle constant a “turn”,
τ works well in both written and spoken contexts. For example, saying that
a quarter circle has radian angle measure “one quarter turn” sounds great,
but “turn over four radians” sounds awkward, and “the area of a circle is
one-half turn r squared” sounds downright odd. Using τ , we can say “tau
over four radians” and “the area of a circle is one-half tau r squared.”

4.1.1 Ambiguous notation

Of course, with any new notation there is the potential for conflict with
present usage. As noted in Section 1.1, “π Is Wrong!” avoids this problem
by introducing a new symbol (Figure 1). There is precedent for this; for ex-
ample, in the early days of quantum mechanics Max Planck introduced the
constant h, which relates a light particle’s energy to its frequency (through
E = hν), but physicists soon realized that it is often more convenient to
use ~ (read “h-bar”)—where ~ is just h divided by. . . um. . . 2π—and this
usage is now standard. But getting a new symbol accepted is difficult: it
has to be given a name, that name has to be popularized, and the symbol it-
self has to be added to word processing and typesetting systems. Moreover,
promulgating a new symbol for 2π would require the cooperation of the
academic mathematical community, which on the subject of π vs. τ has so
far been apathetic at best and hostile at worst. Using an existing symbol al-
lows us to route around the mathematical establishment. (Perhaps someday
academic mathematicians will come to a consensus on a different symbol
for the number 2π; if that ever happens, I reserve the right to support their
proposed notation. But they have had over 300 years to fix this π problem,
so I wouldn’t hold my breath.)
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Rather than advocating a new symbol, The Tau Manifesto opts for the
use of an existing Greek letter. As a result, since τ is already used in some
current contexts, we must address the conflicts with existing practice. For-
tunately, there are surprisingly few common uses. Moreover, while τ is
used for certain specific variables—e.g., shear stress in mechanical engi-
neering, torque in rotational mechanics, and proper time in special and gen-
eral relativity—there is no universal conflicting usage.10 In those cases, we
can either tolerate ambiguity or route around the few present conflicts by
selectively changing notation, such as using N for torque11 or τp for proper
time.

Despite these arguments, potential usage conflicts have proven to be the
greatest source of resistance to τ . Some correspondents have even flatly de-
nied that τ (or, presumably, any other currently used symbol) could possibly
overcome these issues. But scientists and engineers have a high tolerance
for notational ambiguity, and claiming that τ -the-circle-constant can’t coex-
ist with other uses ignores considerable evidence to the contrary.

One example of easily tolerated ambiguity occurs in quantum mechan-
ics, where we encounter the following formula the Bohr radius, which (roughly
speaking) is the “size” of a hydrogen atom in its lowest energy state (the
ground state):

a0 =
~2

me2
,

where m is the mass of an electron and e is its charge. Meanwhile, the
ground state itself is described by a quantity known as the wavefunction,
which falls off exponentially with radius on a length scale set by the Bohr
radius:

ψ(r) = N e−r/a0,

where N is a normalization constant.
10The only possible exception to this is the golden ratio, which is often denoted by τ in Europe. But not

only is there an existing common alternative to this notation—namely, the Greek letter ϕ—this usage shows
that there is precedent for using τ to denote a fundamental mathematical constant.

11This alternative for torque is already in use; see, for example, Introduction to Electrodynamics by David
Griffiths, p. 162.
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Have you noticed the problem yet? Probably not, which is just the point.
The “problem” is that the e in the Bohr radius and the e in the wavefunction
are not the same e—the first is the charge on an electron, while the second
is the exponential number (the base of natural logarithms). In fact, if we
expand the factor of a0 in the argument of the exponent, we get

ψ(r) = N e−me
2r/~2,

which has an e raised the power of something with e in it. It’s even worse
than it looks, because N itself contains e as well:

ψ(r) =

√
1

πa30
e−r/a0 =

m3/2e3

π1/2~3
e−me

2r/~2.

I have no doubt that if a separate notation for the natural number did
not already exist, anyone proposing the letter e would be told it’s impos-
sible because of the conflicts with other uses. And yet, in practice no one
ever has any problem with using e in both contexts above. There are many
other examples, including situations where even π is used for two different
things.12 It’s hard to see how using τ for multiple quantities is any different.

By the way, the π-pedants out there (and there have proven to be many)
might note that hydrogen’s ground-state wavefunction has a factor of π:

ψ(r) =

√
1

πa30
e−r/a0.

At first glance, this appears to be more natural than the version with τ :

ψ(r) =

√
2

τa30
e−r/a0.

As usual, appearances are deceiving: the value ofN comes from the product

1√
2π

1√
2

2

a
3/2
0

,

12See, for instance, An Introduction to Quantum Field Theory by Peskin and Schroeder, where π is used to
denote both the circle constant and a “conjugate momentum” on the very same page (p. 282).
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which shows that the circle constant enters the calculation through 1/
√

2π,
i.e., 1/

√
τ . As with the formula for circular area, the cancellation to leave a

bare π is a coincidence.

4.2 The Pi Manifesto
Although most objections to τ come from scattered email correspondence
and miscellaneous comments on the Web, there is also an organized resis-
tance. In particular, since the publication of The Tau Manifesto in June
2010, a “Pi Manifesto” has appeared to make the case for the traditional
circle constant. This section and the two after it contain a rebuttal of its ar-
guments. Of necessity, this treatment is terser and more advanced than the
rest of the manifesto, but even a cursory reading of what follows will give
an impression of the weakness of the Pi Manifesto’s case.

While we can certainly consider the appearance of the Pi Manifesto a
good sign of continuing interest in this subject, it makes several false claims.
For example, it says that the factor of 2π in the Gaussian (normal) distribu-
tion is a coincidence, and that it can more naturally be written as

1
√
π(
√

2σ)
e
−x2

(
√
2σ)2 .

This is wrong: the factor of 2π comes from squaring the unnormalized
Gaussian distribution and switching to polar coordinates, which leads to
a factor of 1 from the radial integral and a 2π from the angular integral. As
in the case of circular area, the factor of π comes from 1/2 × 2π, not from
π alone.

A related claim is that the Gamma function evaluated at 1/2 is more
natural in terms of π:

Γ(12) =
√
π,

where
Γ(p) =

∫ ∞
0

xp−1e−x dx.
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But Γ(12) reduces to the same Gaussian integral as in the normal distribution
(upon setting u = x1/2), so the π in this case is really 1/2 × 2π as well.
Indeed, in many of the cases cited in the Pi Manifesto, the circle constant
enters through an integral over all angles, i.e., as θ ranges from 0 to τ .

The Pi Manifesto also examines some formulas for regular n-sided poly-
gons (or “n-gons”). For instance, it notes that the sum of the internal angles
of an n-gon is given by

n∑
i=1

θi = (n− 2)π.

This issue was dealt with in “Pi Is Wrong!”, which notes the following:
“The sum of the interior angles [of a triangle] is π, granted. But the sum
of the exterior angles of any polygon, from which the sum of the interior
angles can easily be derived, and which generalizes to the integral of the
curvature of a simple closed curve, is 2π.” In addition, the Pi Manifesto
offers the formula for the area of an n-gon with unit radius (the distance
from center to vertex),

A = n sin
π

n
cos

π

n
,

calling it “clearly. . . another win for π.” But using the double-angle identity
sin θ cos θ = 1

2 sin 2θ shows that this can be written as

A = n/2 sin
2π

n
,

which is just

A =
1

2
n sin

τ

n
.

In other words, the area of an n-gon has a natural factor of 1/2. In fact,
taking the limit n → ∞ (and applying L’Hôpital’s rule) gives the area of a
unit regular polygon with infinitely many sides, i.e., a unit circle:

A = lim
n→∞

1

2
n sin

τ

n
=

1

2
lim
n→∞

sin τ
n

1/n
=

1

2
τ.
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In this context, we should note that the Pi Manifesto makes much ado
about π being the area of a unit disk, so that (for example) the area of a
quarter (unit) circle is π/4. This, it is claimed, makes just as good a case for
π as radian angle measure does for τ . Unfortunately for this argument, as
noted in Section 3 and as seen again immediately above, the factor of 1/2
arises naturally in the context of circular area. Indeed, the formula for the
area of a circular sector subtended by angle θ is

1

2
θ r2,

so there’s no way to avoid the factor of 1/2 in general. (We thus see that
A = 1

2τ r
2 is simply the special case θ = τ .)

In short, the difference between angle measure and area isn’t arbitrary.
There is no natural factor of 1/2 in the case of angle measure. In contrast,
in the case of area the factor of 1/2 arises through the integral of a linear
function in association with a simple quadratic form. In fact, the case for π
is even worse than it looks, as shown in the next section.

5 Getting to the bottom of pi and tau
I continue to be impressed with how rich this subject is, and my understand-
ing of π and τ continues to evolve. On Half Tau Day, 2012, I identified
exactly what is wrong with π. My argument hinged on an analysis of the
surface area and volume of an n-dimensional sphere, which (as shown be-
low) makes clear that π doesn’t have any fundamental geometric signifi-
cance. My analysis was incomplete, though—a fact brought to my attention
in a remarkable message from Tau Manifesto reader Jeff Cornell. As a re-
sult, this section is an attempt not only to definitively debunk π, but also
to articulate the truth about τ , a truth that is deeper and subtler than I had
imagined.
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5.1 Surface area and volume of a hypersphere
We start our investigations with the generalization of a circle to arbitrary di-
mensions. This object, called a hypersphere or an n-sphere, it can be defined
as follows.13 (For convenience, we assume that these spheres are centered
on the origin.) A 0-sphere is the empty set, and we define its “interior” to
be a point.14 A 1-sphere is the set of all points satisfying

x2 = r2,

which consists of the two points ±r. Its interior, which satisfies

x2 ≤ r2,

is the line segment from −r to r. A 2-sphere is a circle, which is the set of
all points satisfying

x2 + y2 = r2.

Its interior, which satisfies,

x2 + y2 ≤ r2,

is a disk. Similarly, a 3-sphere satisfies

x2 + y2 + z2 = r2,

and its interior is a ball. The generalization to arbitrary n, although difficult
to visualize for n > 3, is straightforward: an n-sphere is the set of all points
satisfying

n∑
i=1

x2i = r2.

The Pi Manifesto (discussed in Section 4.2) includes an formula for the
volume of a unit n-sphere as an argument in favor of π:

√
π
n

Γ(1 + n
2 )
,

13This discussion is based on an excellent comment by John Kodegadulo at spikedmath.com.
14This makes sense, because a point has no boundary, i.e., the boundary of a point is the empty set.

30

http://spikedmath.com/forum/viewtopic.php?f=30&t=147#p1577
http://spikedmath.com/


where (as noted in Section 4.2) the Gamma function is

Γ(p) =

∫ ∞
0

xp−1e−x dx.

This is a special case of the formula for general radius, which is also typi-
cally written in terms of π:

Vn =
πn/2rn

Γ(1 + n
2 )
.

Because Vn =
∫
Sn dr, we have Sn = dVn/dr, which means that the surface

area can be written as follows:

Sn =
nπn/2rn−1

Γ(1 + n
2 )
.

Rather than simply take these formulas at face value, let’s see if we can
untangle them to shed more light on the question of π vs. τ . We begin our
analysis by noting that the apparent simplicity of the above formulas is an
illusion: although the Gamma function is notationally simple, in fact it is
an integral over a semi-infinite domain, which is not a simple idea at all.
Fortunately, the Gamma function can be simplified in certain special cases.
For example, when n is an integer, it is easy to show (using integration by
parts) that

Γ(n) = (n− 1)(n− 2) . . . 2 · 1 = (n− 1)!

Seen this way, Γ can be interpreted as a generalization of the factorial func-
tion to real-valued arguments.15

In the n-dimensional surface area and volume formulas, the argument
of Γ is not necessarily an integer, but rather is (1 + n

2 ), which is an integer
when n is even and is a half -integer when n is odd. Taking this into account
gives the following expression, which is taken from a standard reference,

15Indeed, the generalization to complex-valued arguments is straightforward.
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Wolfram MathWorld, and as usual is written in terms of π:

Sn =



2πn/2 rn−1

(12n− 1)!
if n is even;

2(n+1)/2π(n−1)/2 rn−1

(n− 2)!!
if n is odd.

Integrating with respect to r then gives

Vn =


πn/2 rn

(n2 )!
if n is even;

2(n+1)/2π(n−1)/2 rn

n!!
if n is odd.

Let’s examine the volume formula in more detail. Notice first that Math-
World uses the double factorial function n!!—but, strangely, it uses it only
in the odd case. (This is a hint of things to come.) The double factorial func-
tion, although rarely encountered in mathematics, is elementary: it’s like the
normal factorial function, but involves subtracting 2 at a time instead of 1,
so that, e.g., 5!! = 5 · 3 · 1 and 6!! = 6 · 4 · 2. In general, we have

n!! =


n(n− 2)(n− 4) . . . 6 · 4 · 2 if n is even;

n(n− 2)(n− 4) . . . 5 · 3 · 1 if n is odd.

(By definition, 0!! = 1!! = 1.) Note that this definition naturally divides into
even and odd cases, making MathWorld’s decision to use it only in the odd
case still more mysterious.

To solve this mystery, we’ll start by taking a closer look at the formula
for odd n:

2(n+1)/2π(n−1)/2 rn

n!!
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Upon examining the expression

2(n+1)/2π(n−1)/2,

we notice that it can be rewritten as

2(2π)(n−1)/2,

and here we recognize our old friend 2π.
Now let’s look at the even case. We noted above how strange it is to

use the ordinary factorial in the even case but the double factorial in the odd
case. Indeed, because the double factorial is already defined piecewise, if
we unified the formulas by using n!! in both cases we could pull it out as a
common factor:

Vn =
1

n!!
×


. . . if n is even;

. . . if n is odd.

So, is there any connection between the factorial and the double factorial?
Yes—when n is even, the two are related by the following identity:(n

2

)
! =

n!!

2n/2
.

(This is easy to verify using mathematical induction.) Substituting this into
the volume formula for even n then yields

2n/2πn/2 rn

n!!
,

which bears a striking resemblance to

(2π)n/2 rn

n!!
,

and again we find a factor of 2π.
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Putting these results together, we see that the volume of an n-sphere can
be rewritten as

Vn =


(2π)n/2 rn

n!!
if n is even;

2(2π)(n−1)/2 rn

n!!
if n is odd

and its surface area is

Sn =



(2π)n/2 rn−1

(n− 2)!!
if n is even;

2(2π)(n−1)/2 rn−1

(n− 2)!!
if n is odd.

Making the substitution τ = 2π then yields

Sn =



τn/2 rn−1

(n− 2)!!
if n is even;

2τ (n−1)/2 rn−1

(n− 2)!!
if n is odd.

To unify the formulas further, we can use the floor function bxc, which is
simply the largest integer less than or equal to x (so that, e.g., b3.7c =
b3.2c = 3). This gives

Sn =



τb
n
2c rn−1

(n− 2)!!
if n is even;

2τb
n
2c rn−1

(n− 2)!!
if n is odd,
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which allows us to write the formula as follows:

Sn =
τb

n
2c rn−1

(n− 2)!!
×


1 if n is even;

2 if n is odd.

Integrating with respect to r then yields

Vn =
τb

n
2c rn

n!!
×


1 if n is even;

2 if n is odd.

The equations above are a major improvement over the original formu-
lation in terms of π, making what seems like an unassailable argument for
τ . As we’ll see, it is indeed the case that π is virtually useless in this con-
text, but things are not as simple as they seem. In particular, Tau Manifesto
reader Jeff Cornell pointed out, to my utter astonishment, that the formulas
can be simplified further using the measure of a right angle,

η =
τ

4
.

(Jeff used λ (lambda) in his correspondence, but I use η (eta) in recognition
of its use in David Butler’s video Pi may be wrong, but so is Tau.)

The biggest advantage of η is that it completely unifies the even and odd
cases. Making the substitution τ = 4η gives

τb
n
2c = (4η)b

n
2c = 22b

n
2cηb

n
2c = ηb

n
2c ×


2n if n is even;

2n−1 if n is odd.

This means that we have a factor of

ηb
n
2c ×


2n if n is even;

2n−1 if n is odd.
×


1 if n is even;

2 if n is odd.
= 2n ηb

n
2c,
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which eliminates the explicit dependence on parity. Applying this to the
formulas for surface area and volume yields

Sn =
2n ηb

n
2c rn−1

(n− 2)!!

and

Vn =
2n ηb

n
2c rn

n!!
.

The simplification in these formulas appears to come at the cost of a
factor of 2n, but even this has a clear geometric meaning: a sphere in n
dimensions divides naturally into 2n congruent pieces, corresponding to the
2n families of solutions to

∑n
i=1 x

2
i = r2 (one for each choice of ±xi). In

two dimensions, these are the circular arcs in each of the four quadrants; in
three dimensions, they are the sectors of the sphere in each octant; and so
on in higher dimensions.

What the formulas in terms of η tell us is that we can exploit the symme-
try of the sphere by calculating the surface area or volume of one piece—
typically the principal part where xi > 0 for every i—and then find the full
value by multiplying by 2n. This suggests that the fundamental constant
uniting the geometry n-spheres is the measure of a right angle. (I liken the
difference between τ and η to the difference between the electron charge e
and the charge on a down quark qd = e/3: the latter is the true quantum of
charge, but using qd in place of e would introduce inconvenient factors of 3
throughout physics and chemistry.)

5.2 Three families of constants
We have nearly gotten to the bottom of π and τ . To complete the excavation,
we’ll use the general formulas for the surface area and volume of an n-
sphere to define two families of constants, and then use the definition of π
to define a third.
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The first family is defined by the surface area formula:

τn ≡
Sn
rn−1

=
2n ηb

n
2c

(n− 2)!!

The second family is defined by the volume formula:

σn ≡
Vn
rn

=
2n ηb

n
2c

n!!

(As in Section 5.1, here η = τ/4.) With these two families of constants, we
can write the surface area and volume formulas compactly as follows:

Sn = τn r
n−1

and
Vn = σn r

n.

Because of the relation Vn =
∫
Sn dr, we have the simple relationship

σn =
τn
n
.

Let us make some observations about these two families of constants.
The first, as noted above, is that it is not τ but η that unites these formulas.
Nevertheless, the family τn has an important geometric meaning: by setting
r = 1, we see that each τn is the surface area of a unit n-sphere, which is
also the angle measure of a full n-sphere. In particular, by writing sn as the
n-dimensional “arclength” equal to a fraction f of the full surface area Sn,
we have

θn ≡
sn
rn−1

=
fSn
rn−1

= f

(
Sn
rn−1

)
= fτn.

Here θn is simply the n-dimensional generalization of radian angle measure,
and we see that τn is the generalization of “one turn” to n dimensions, which
explains why the 2-sphere (circle) constant τ2 = 22 η = τ leads naturally to
the diagram shown in Figure 8.
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Meanwhile, the σn are the volumes of unit n-spheres. In particular, σ2
is the area of a unit disk:

σ2 =
τ2
2

=
τ

2
.

This shows that σ2 = τ/2 = 3.14159 . . . does have an independent geo-
metric significance. Note, however, that it has nothing to do with circum-
ferences or diameters. In other words, π = C/D is not a member of the
family σn.

So, to which family of constants does π naturally belong? Let’s rewrite
π = C/D in terms more appropriate for generalization to higher dimen-
sions:

π =
C

D
=

S2

D2−1 .

We thus see that π is naturally associated with surface areas divided by the
power of the diameter necessary to yield a dimensionless constant. This
suggests introducing a third family of constants πn:

πn ≡
Sn
Dn−1 .

We can express this family in terms of the τn as follows:

πn =
Sn
Dn−1 =

Sn
(2r)n−1

=
Sn

2n−1rn−1
=

τn
2n−1

.

We are now finally in a position to understand exactly what is wrong
with π. The principal geometric significance of 3.14159 . . . is that it is the
area of a unit disk. But this number comes from evaluating σn = τn/n when
n = 2:

σ2 =
τ2
2

=
τ

2
.

It’s true that this equals π2:

π2 = π =
τ2

22−1
=
τ

2
.

But this equality is a coincidence: it occurs only because 2n−1 happens to
equal n when n = 2. In all higher dimensions, n and 2n−1 are distinct. In
other words, the geometric significance of π is the result of a mathematical
pun.
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6 Conclusion
Over the years, I have heard many arguments against the wrongness of π
and against the rightness of τ , so before concluding our discussion allow
me to answer some of the most frequently asked questions.

6.1 Frequently Asked Questions
• Are you serious?

Of course. I mean, I’m having fun with this, and the tone is occasion-
ally lighthearted, but there is a serious purpose. Setting the circle con-
stant equal to the circumference over the diameter is an awkward and
confusing convention. Although I would love to see mathematicians
change their ways, I’m not particularly worried about them; they can
take care of themselves. It is the neophytes I am most worried about,
for they take the brunt of the damage: as noted in Section 2.1, π is
a pedagogical disaster. Try explaining to a twelve-year-old (or to a
thirty-year-old) why the angle measure for an eighth of a circle—one
slice of pizza—is π/8. Wait, I meant π/4. See what I mean? It’s
madness—sheer, unadulterated madness.

• How can we switch from π to τ?
The next time you write something that uses the circle constant, sim-
ply say “For convenience, we set τ = 2π”, and then proceed as usual.
(Of course, this might just prompt the question, “Why would you want
to do that?”, and I admit it would be nice to have a place to point them
to. If only someone would write, say, a manifesto on the subject. . . )
The way to get people to start using τ is to start using it yourself.

• Isn’t it too late to switch? Wouldn’t all the textbooks and math
papers need to be rewritten?
No on both counts. It is true that some conventions, though unfortu-
nate, are effectively irreversible. For example, Benjamin Franklin’s
choice for the signs of electric charges leads to electric current being
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positive, even though the charge carriers themselves are negative—
thereby cursing electrical engineers with confusing minus signs ever
since.16 To change this convention would require rewriting all the
textbooks (and burning the old ones) since it is impossible to tell at a
glance which convention is being used. In contrast, while redefining
π is effectively impossible, we can switch from π to τ on the fly by
using the conversion

π ↔ 1
2τ.

It’s purely a matter of mechanical substitution, completely robust and
indeed fully reversible. The switch from π to τ can therefore happen
incrementally; unlike a redefinition, it need not happen all at once.

• Won’t using τ confuse people, especially students?
If you are smart enough to understand radian angle measure, you are
smart enough to understand τ—and why τ is actually less confusing
than π. Also, there is nothing intrinsically confusing about saying
“Let τ = 2π”; understood narrowly, it’s just a simple substitution.
Finally, we can embrace the situation as a teaching opportunity: the
idea that π might be wrong is interesting, and students can engage
with the material by converting the equations in their textbooks from
π to τ to see for themselves which choice is better.

• Does any of this really matter?
Of course it matters. The circle constant is important. People care
enough about it to write entire books on the subject, to celebrate it on
a particular day each year, and to memorize tens of thousands of its
digits. I care enough to write a whole manifesto, and you care enough
to read it. It’s precisely because it does matter that it’s hard to admit
that the present convention is wrong. (I mean, how do you break it to
Lu Chao, the current world-record holder, that he just recited 67,890
digits of one half of the true circle constant?) Since the circle constant
is important, it’s important to get it right, and we have seen in this

16The sign of the charge carriers couldn’t be determined with the technology of Franklin’s time, so this
isn’t his fault. It’s just bad luck.
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manifesto that the right number is τ . Although π is of great historical
importance, the mathematical significance of π is that it is one-half τ .

• Why did anyone ever use π in the first place?
As notation, π was popularized around 300 years ago by Leonhard
Euler (based on the work of William Jones), but the origins of π-the-
number are lost in the mists of time. I suspect that the convention of
using C/D instead of C/r arose simply because it is easier to mea-
sure the diameter of a circular object than it is to measure its radius.
But that doesn’t make it good mathematics, and I’m surprised that
Archimedes, who famously approximated the circle constant, didn’t
realize that C/r is the more fundamental number. I’m even more sur-
prised that Euler didn’t correct the problem when he had the chance;
unlike Archimedes, Euler had the benefit of modern algebraic nota-
tion, which (as we saw starting in Section 2.1) makes the underlying
relationships between circles and the circle constant abundantly clear.

• Why does this subject interest you?
First, as a truth-seeker I care about correctness of explanation. Sec-
ond, as a teacher I care about clarity of exposition. Third, as a hacker
I love a nice hack. Fourth, as a student of history and of human nature
I find it fascinating that the absurdity of π was lying in plain sight
for centuries before anyone seemed to notice. Moreover, many of the
people who missed the true circle constant are among the most ratio-
nal and intelligent people ever to live. What else might be staring us
in the face, just waiting for us to discover it?

• Are you, like, a crazy person?
That’s really none of your business, but no. Apart from occasionally
wearing unusual shoes, I am to all external appearances normal in
every way. You would never guess that, far from being an ordinary
citizen, I am in fact a notorious mathematical propagandist.

• But what about puns?
We come now to the final objection. I know, I know, “π in the sky”
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is so very clever. And yet, τ itself is pregnant with possibilities. τ ism
tells us: it is not τ that is a piece of π, but π that is a piece of τ—one-
half τ , to be exact. The identity eiτ = 1 says: “Be 1 with the τ .” And
though the observation that “A rotation by one turn is 1” may sound
like a τ -tology, it is the true nature of the τ . As we contemplate this
nature to seek the way of the τ , we must remember that τ ism is based
on reason, not on faith: τ ists are never πous.

6.2 Embrace the tau
We have seen in The Tau Manifesto that the natural choice for the circle
constant is the ratio of a circle’s circumference not to its diameter, but to its
radius. This number needs a name, and I hope you will join me in calling
it τ :

circular unit = τ ≡ C

r
= 6.283185307179586 . . .

The usage is natural, the motivation is clear, and the implications are pro-
found. Plus, it comes with a really cool diagram (Figure 14). We see in
Figure 14 a movement through yang (“light, white, moving up”) to τ/2 and
a return through yin (“dark, black, moving down”) back to τ .17 Using π
instead of τ is like having yang without yin.

6.3 Tau Day
The Tau Manifesto first launched on Tau Day: June 28 (6/28), 2010. Tau
Day is a time to celebrate and rejoice in all things mathematical.18 If you
would like to receive updates about τ , including notifications about possible
future Tau Day events, please join the Tau Manifesto mailing list below. And
if you think that the circular baked goods on Pi Day are tasty, just wait—Tau
Day has twice as much pi(e)!

17The interpretations of yin and yang quoted here are from Zen Yoga: A Path to Enlightenment though
Breathing, Movement and Meditation by Aaron Hoopes.

18Since 6 and 28 are the first two perfect numbers, 6/28 is actually a perfect day.
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0, τ

Figure 14: Followers of τ ism seek the way of the τ .
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The signup form is available online at http://tauday.com/signup.
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deleted] section 5 is total crap”, Wyatt is your man.

6.3.2 About the author

The Tau Manifesto author Michael Hartl is a physicist, educator, and en-
trepreneur. He is the author of the Ruby on Rails Tutorial, the leading intro-
duction to web development with Ruby on Rails. Previously, he taught theo-
retical and computational physics at Caltech, where he received the Lifetime
Achievement Award for Excellence in Teaching and served as Caltech’s ed-
itor for The Feynman Lectures on Physics: The Definitive and Extended
Edition. He is a graduate of Harvard College, has a Ph.D. in Physics from
the California Institute of Technology, and is an alumnus of the Y Combi-
nator entrepreneur program.

Michael is ashamed to admit that he knows π to 50 decimal places—
approximately 48 more than Matt Groening. To atone for this, he has now
memorized 52 decimal places of τ .

6.3.3 Copyright and license

The Tau Manifesto. Copyright c© 2013 by Michael Hartl. Please feel free to
share The Tau Manifesto, which is available under the Creative Commons
Attribution 3.0 Unported License. This means that you can adapt it, translate
it, or even include it in commercial works, as long as you attribute it to me
(Michael Hartl) and link back to tauday.com. You also have permission to
distribute copies of The Tau Manifesto PDF, print it out, use it in classrooms,
and so on. Go forth and spread the good news about τ !
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