HUMAN BIOLOGY

CHAPTER 2: The Chemistry of Living Things

2.2. Atoms combine to form molecules

Most common and important elements in living organisms:

99%

- 1) Oxygen (O)
- 2) Carbon (C)
- 3) Hydrogen (H)
- 4) Nitrogen (N)
- 5) Calcium (Ca)
- 6) Phosporus (P)
 1%
- 7) Potassium (K)
- 8) Sulfur (S)
- 9) Sodium (Na)
- 10) Chlorine (Cl)
- 11) Magnesium (Mg)
- 12) Iron (Fe)

2.3. Life depends on water

- 60% of our body weight = water
- Important properties:
 - Water molecules are polar
 - Keeps ions dissolved
 - Water is a liquid at body temperature
 - Excellent medium for transporting solutes + occupies space in/between cells
 - Water can absorb and hold heat energy
 - Prevents large increases in body temperature or too much heat loss
 - Quickly lose heat by evaporation of water
 - → water = ideal solvent + important factor for temperature regulation

2.4. The importance of hydrogen ions

- Hydrogen ion = single proton without an electron
- $H_2O = H^+$ (hydrogen ion) en OH^- (hydroxide ion)
- Acid = any molecule that can donate an H⁺ ion
 - Pure water + acid = acidic solution (higher H^+ concentration than pure water)
- **Base** = any molecule that can accept an H⁺ ion
 - Pure water + base = basic or alkaline solution (lower H⁺ concentration than pure water)
- Acids and bases neutralize each other
- **Ph scale** = measure of hydrogen ion concentration of a solution

- o From 0 to 14
- Pure water = Ph 7.0
- Blood = Ph 7.4
- Important to keep a low concentration of hydrogen ions in the body!
 → They tend to displace other positive ions, altering shape and structure of molecules
- **Buffer** = any substance that tends to minimize the changes in Ph that might otherwise occur when an acid or base is added to a solution
 - o important for maintaining homeostasis of Ph in body fluids
 - Pairs of related molecules that have opposite effects (acid form and base form)
 - Most important buffer pair = **bicarbonate and carbonic acid**
 - Maintain homeostasis of Ph in blood

2.5. The organic molecules of living organisms

- **Organic molecules** = contain carbon and other elements held together by covalent bonds
- Carbon (koolstof) = common building block of all organic molecules
 - More stable when its second shell is filled with eight electrons
 - Natural tendency to form 4 covalent bonds with other molecules
 - Almost no limit to the size of organic molecules derived from carbon
- Macromolecules = consist of thousands or millions of smaller molecules
- Dehydration synthesis = subunits are joined by covalent bonds
 - each time a subunit is added, the equivalent of a water molecule is removed (dehydration)
 - o requires energy
- **Hydrolysis** = breakdown of organic macromolecules
 - Equivalent of a water molecule is added, each time a covalent bond between subunits is broken
 - Releases energy
- Living organisms synthesize 4 classes of organic molecules:
 - 1) carbohydrates
 - 2) lipids
 - 3) proteins
 - 4) nucleic acids

2.6. Carbohydrates

- **Carbohydrates** = carbon + 2 hydrogen + oxygen
- Used for energy and structural support
- **Monosaccharide** = carbon + 2 hydrogen + oxygen
 - o Glucose, fructose, ribose and desoxyribose
 - Glucose = energy for cells
- **Oligosaccharides** = short strings of monosaccharides linked together by dehydration synthesis
 - Bvb: table sugar
 - **Disaccharide** = 2 monosaccharide

- Polysaccharides = thousands of monosaccharides are joined together
 - Way for cells to store energy
 - Animals: glycogen / Plants: starch
 - **Cellulose** = structural support (plants)

2.7. Lipids

- Relatively insoluble in water
- Triglycerides = (neutral) fats
 - Glycerol + 3 fatty acids (chains of hydrocarbons that end in a carboxyl group (COOH)
 - Saturated fats
 - solid at room temperature
 - Animal fats (butter, bacon grease)
 - Contributes to development of cardiovascular disease
 - Unsaturated fats = oils
 - Liquid at room temperature
 - o Stored in adipose tissue
 - Important source of stored energy
- Phospholipids
 - o Primary structural component of cell membranes
 - Glycerol + 2 fatty acids + phosphate group $(PO_4) + ...$
 - One end of molecule is polar (soluble in water), one end is neutral (insoluble in water)
- Steroids
 - Relatively insoluble in water
 - o Bvb: cholesterol
 - Essential structural component of animal cell membranes
 - Source of several important hormones (o.a. estrogen, testosteron)

2.8. Proteins

- Long strings of amino acids
- Differences in charge/structure of amino acids → differences in shape/functions of proteins
- Formed by dehydration synthesis
- 3 to 100 amino acids = polypeptide
- 100+ amino acids = **protein**
 - Primary structure: amino acid sequence
 - Secondary structure: how the chain is orientated in space
 - Alpha helix
 - Beta sheet
 - Random coil
 - *Tertiary structure*: how the protein twists and folds to form a 3-dimensional shape
 - *Quaternary structure*: how many polypeptide chains make up the protein and how they associate with each other
- Functions
 - Structural support

- Muscle contraction
- Part of cell membrane
- o Enzymes
- Denaturation = permanent disruption of protein structure, leading to loss of function
 - Caused by high temperature or changes in pH
- Enzyme = biological catalyst
 - Speeds up the rate of chemical reaction without itself being altered or consumed by the reaction
 - o Break molecules apart or join them together
 - o Reactants (= substrates) → products
- Protein shape is in part determined by chemical/physical environment inside the cell
 - Temperature, pH, ion concentration
 - → importance of homeostasis!

2.9. Nucleic acids

- DNA (deoxyribonucleic acid)
 - $\circ \quad \text{Genetic material of the cell} \\$
 - Directs and controls all of life's processes
- RNA (ribonucleic acid)
 - Responsible for carrying out instructions of DNA
- Importance:
 - DNA contains the instructions for producing RNA
 - RNA contains the instructions for producing proteins
 - Proteins direct most of life's processes
- Both DNA and RNA are composed of nucleotides
 - 8 different nucleotides (4 in RNA + 4 in DNA)
 - o DNA:
 - deoxyribose + phosphate group(s) + base
 - base = adenine, thymine, cytosine or guanine
 - 2 complementary strands (A with T, C with G)
 - o RNA:
 - ribose + phosphate group(s) + base
 - base = adenine, uracil, cytosine or guanine
 - single-stranded molecule (complimentary copy of only one strand of DNA)
 - RNA is shorter (only the segment of DNA that codes for proteins)

2.10. ATP

- ATP = adenosine triphosphate
- Adenine base + ribose + triphosphate
- bonds between phosphate groups cointain potential energy \rightarrow energy source for cells
- Cells can break down ATP for energy:
 - ATP \rightarrow ADP (adenosine diphosphate) + P_i (inorganic phosphate group) + energy
 - Reaction is reversible!

CHAPTER 3: Structure and Function of cells

- Cell doctrine:
 - 1) All living things are composed of cells and cell products
 - 2) A single cell is the smallest unit that exhibits all the characteristics of life
 - 3) All cells come only from preexisting cells

3.1. Cells are classified according to their internal organization

- All cells have a **plasma membrane**
 - o Encloses the material inside the cell
- Eukaryotes
 - o Plasma membrane
 - o Nucleus
 - Cytoplasm: cytosol + organelles
- Prokaryotes
 - o Bacteria
 - Plasma membrane
 - Genetic material isn't enclosed in a nucleus
 - o Lack most of the organelles found in eukaryotes

3.2. Cell structure reflects cell function

- Strong link between structure and function
- All cells are small, because:
 - The total metabolic activities of a cell are proportional to its volume of cytoplasm, which is in effect its size
 - All raw materials, energy, and waste can enter or leave the cell only by crossing the plasma membrane
 - As objects get larger, their volume increases more than their surface area
 → The smaller a cell is, the more effectively it can obtain raw materials and get rid of wastes
- Microvilli = effective way to increase surface area relative to volume

3.3. A plasma membrane surrounds the cell

- Constructed of:
 - o Lipid bilayer
 - polar head (water-soluble) and nonpolar tails (water-insoluble)
 - Polar heads face outward, nonpolar tails face inward
 - o Cholesterol
 - Make the plasma membrane more rigid
 - o Proteins
 - Transporting molecules and information across the plasma membrane
- Plasma membranes of animal cells are not rigid (flexible)
- Phospholipids and proteins are not anchored to specific positions in the plasma membrane

3.4. Molecules cross the plasma membrane in several ways

1) Passive transport

- Doesn't require energy
- Diffusion:
 - Molecules in a gas/liquid move about randomly, colliding with other molecules and changing direction
 - Diffusion = movement of molecules from one region to another as a result of this random motion
 - Molecules will tend to diffuse away from area of high concentration and toward region of low concentration
 - o Requires a concentration gradient between 2 points
 - Once the concentration of molecules is the same throughout the solution, a state of equilibrium exists in which molecules diffuse randomly but equally in all directions
- Pure water = solution with the highest possible concentration of water
- Plasma membrane is selectively permeable
 - Highly permeable of water, but not to all ions or molecules
 - Net diffusion of water across a selectively permeable membrane = osmosis
 - Fluid pressure to exactly oppose osmosis = osmotic pressure

Diffusion through the lipid bilayer

- Allows passage of some molecules while restricting others
- 2 important lipid-soluble molecules: O₂ and CO₂

Diffusion through channels

- Constructed of proteins that span the entire lipid bilayer
- Some channels are open all the time, others are gated
- Important in regulating transport of ions (sodium, potassium and calcium) in cells that are electrically excitable

Facilitated transport

- = facilitated diffusion
- Molecule attaches to a membrane protein, triggering a change in the protein's shape or orientation that transfers the molecule to the other side of the membrane
 = transport protein or carrier protein

2) Active transport

- Can move substances through the plasma membrane against their concentration gradient
- Requires energy (ATP \rightarrow ADP + P_i + energy)
- **Pumps** = proteins that actively transport molecules across the plasma membrane
 - Bvb: sodium-potassium pump
- Not all active transport pumps require ATP: some pumps derive energy from "downhill" facilitated transport and use it to transport another molecule "uphill"

3) Endocytosis or exocytosis

- Some molecules are too big to be transported by the previous methods
- Endocytosis: moves material into the cell
- **Exocytosis**: moves material out of the cell
- **Receptor proteins**: span the plasma membrane and can receive and transmit information across the membrane
 - Binding of a molecule to a receptor site (lock-and-key system) triggers biochemical reactions that ultimately cause changes within the cell
 - Highly specific for a particular molecule
- Cells tend to accumulate certain materials depending on what is available in their extracellular environment
- Water diffuses from outside the cell toward the high cytoplasmic solute concentration
 - o Would increase cell volume, eventually causing the cell to rupture
- The cell gets rid of ions it doesn't need in large quantities in exchange for those it must stockpile
 - o Keeps the solute concentration in cytoplasm identical to the solute concentration of extracellular fluid → no net driving force for diffusion of water
 - = primary function of **sodium-potassium pump**
 - 3 binding sites for sodium (inside the cell)
 - \circ $\;$ Binding of sodium triggers breakdown of ATP to release energy
 - ATP causes pump to change shape, expelling sodium ions and exposing 2 binding sites for potassium (outside the cell)
 - Binding of potassium triggers another change of shape, transporting potassium into the cell
- Tonicity = relative concentration of solutes in two fluids
 - Ability of a human cell to control its volume also depends on the tonicity of the extracellular fluid
 - o Isotonic extracellular fluid has the same concentration as the intracellular fluid
 - Hypertonic solution: higher concentration of solutes than intracellular fluid
 - Water diffuses out of the cells, cells shrink (and die)
 - **Hypotonic** solution: lower concentration of solutes than intracellular fluid
 - Water diffuses into the cells, cells swell (and die)

3.5. Internal structures carry out specific functions

- Nucleus
 - Information center of the cell
 - Contains most of the cell's genetic material (DNA)
 - DNA controls nearly all activities of the cell
 - Nuclear membrane with nuclear pores
 - **Nucleolus:** synthesizes RNA and proteins that compose ribosomes
- Ribosomes
 - Composed of RNA and certain proteins
 - Either freely floating in cytosol or attached to the endoplasmatic reticulum

- o Responsible for making specific proteins
- Endoplasmatic reticulum (ER)
 - o Synthesizes most of the chemical compounds made by the cell
 - With ribosomes: rough ER
 - Synthesis of proteins
 - Move from rough ER to smooth ER
 - Without ribosomes: smooth ER
 - Synthesis of macromolecules other than protein
 - Mostly lipids (some hormones)
 - Packaging of proteins and lipids for delivery to the Golgi apparatus

• Golgi apparatus

- o Cell's refining, packaging, and shipping center
- \circ $\;$ Contains enzymes that further refine the products of the ER into final form
- Vesicles
 - \circ $\;$ Membrane-bound spheres that enclose something within the cell $\;$
 - Vesicles that ship and store cellular products
 - Enclose and transport products of ER and Golgi apparatus
 - Remains in cytoplasm if the products are not immediately needed
 - Secretory vesicles
 - Contain products destined for export from the cell
 - Release their contents by exocytosis
 - Endocytotic vesicles
 - Enclose bacteria and raw materials from the extracellular environment
 - Bring them into the cell by endocytosis
 - Peroxisomes and lysosomes
 - Contain enzymes so powerful that they must be kept within the vesicle to avoid damaging the rest of the cell
 - Peroxisomes:
 - destroy various toxic wastes produced in the cell
 - destroy compounds that have entered the cell from outside
 - process occurs entirely within the peroxisome
 - Lysosomes:
 - Contain powerful digestive enzymes
 - Fuse with endocytotic vesicles to digest bacteria etc.
 - Dissolve and remove damaged mitochondria
 - When their digestive task is complete, they become **residual bodies** (can be stored in the cell or eliminated by exocytosis)

• Mitochondria

- Provide the cell of energy
- Smooth outer membrane covers the entire surface
- o Inner membrane with numerous folds that increase the surface area
- o Contain hundreds of protein enzymes to break down food and release energy
- Energy is used to create ATP, which is then released in the cytosol

- Some cells store raw energy as lipids (fat) or glycogen granules
 - Energy stored in glycogen can be used to produce ATP more quickly than energy derived from fat

3.6. Cells have structures for support and movement

- Cytoskeleton
 - o loosely structured network of fibers (microtubules and microfilaments)
 - Framework for the soft plasma membrane
 - o Supports and anchors other structures within the cell
- Cilia
 - Hairlike, extend from the surface
 - Cilia move materials along the surface of a cell with a brushing motion
 - o 9 pairs of fused microtubules surround 2 single microtubules in the center
- Flagella
 - found only on sperm cells
 - o whiplike movement moves the entire sperm cell from one place to another
 - similar structure as cilia
- Centrioles
 - Essential for cell division (see Chapter 17)

3.7. Cells use and transform matter and energy

- **Metabolism** = sum of all the chemical reactions in the organism
- Metabolic pathways:
 - o Linear: product from one chemical reaction becomes the substrate for the next
 - Cyclic: substrate molecules enter and product molecules exit, but the basic chemical cycle repeats over and over again
 - o 2 types:
 - Anabolism
 - Molecules are assembled into larger molecules (requires energy)
 - Catabolism
 - Larger molecules are broken down (releases energy)
- Nearly every chemical reaction requires a specific enzyme
- Metabolic activities of a cell require a lot of energy
 - → Cells get their energy by catabolism of molecules that serve as chemical stores of energy
- Glucose = most readily available source of energy
 - $\circ \quad \text{Derived from food or stored glycogen}$
 - Production of ATP:
 - 1) glycolysis: glucose → 2 three-carbon pyruvate molecules
 - 2) preparatory step: pyruvate enters mitochondrion -> acetyl CoA + energy
 - 3) citric acid cycle: acetyl CoA → energy
 - 4) electron transport system: energy is used to produce ATP from ADP
- Most of the body's energy reserves do not take the form of glycogen
 - \circ $\,$ Our body may utilize fats and proteins (fig. 3.30, HB p. 74) $\,$

- A small amount of ATP can be made in humans by **anaerobic metabolism** (without oxygen) for at least brief periods of time
 - Bvb: glycolysis
 - Glucose \rightarrow pyruvate \rightarrow lactic acid
 - Lactic acid causes burning sensation and cramps associated with muscle fatigue when not enough oxygen is available to muscle tissue
 - When oxygen becomes available again, the lactic acid is metabolized by aerobic pathways
 - Glucose is the only fuel that can be used under anaerobic conditions

CHAPTER 4: From Cells to Organ Systems

4.1. Tissues

- Multicellular organism: many cells that collectively share the functions of life
- All cells: specialized function that benefits the organism in some way
 - Specialized functions must be organized and integrated
- **Tissues** = groups of specialized cells that are similar in structure and that perform common functions
 - 4 major types: epithelial, connective, muscle and nervous

4.2. Epithelial tissues

- Sheets of cells that line or cover various surfaces and body cavities
- Protect underlying tissues
- Smooth, reduce friction
- Glandular epithelia (glands): specialized to synthesize and secrete a product
 - Exocrine glands: secrete their products into a hollow organ or duct
 - Endocrine glands: secrete hormones into the bloodstream
- Shape:
 - Squamous
 - flattened cells
 - forms the outer surface of the skin and lines the inner surfaces of the blood vessels, lungs, mouth, throat and vagina
 - \circ Cuboidal
 - Cube-shaped cells
 - Forms the kidney tubules and covers the surfaces of the ovaries
 - o Columnar
 - Rectangular cells
 - Lines parts of digestive tract, certain reproductive organs and the larynx
- Number of cell layers:
 - Simple epithelium
 - single layer of cells
 - thin; molecules can pass through it
 - o Stratified epithelium
 - multiple layers
 - thicker; provides protection for underlying cells

• basement membrane

- o supporting noncellular layer
- o anchors the cells to the stronger connective tissue underneath
- cell junctions
 - o made up of various proteins
 - o hold cells together
 - o types:
 - tight junctions: nothing can pass between the cells

- adhesion junctions: some movement between cells, tissues can stretch and bend
- gap junctions: connecting channels made of proteins that permit movement of ions or water between 2 adjacent cells

4.3. Connective tissue

- supports the softer organs against gravity and connects the parts of the body together
- Fibrous connective tissues
 - Connect various body parts, providing strength, support and flexibility
 - Types of fiber:
 - **Collagen fibers**: confer strength; are slightly flexible
 - Elastic fibers: can stretch without breaking
 - **Reticular fibers**: internal structural framework for some of the "soft" organs
 - Fibers are embedded in a ground substance
 - Contains fibroblasts: secrete proteins that compose collagen/elastic/reticular fibers
 - Subclasses: (table 4.1, HB p. 83)
 - Loose
 - Dense
 - Elastic
 - Reticular (lymphoid)
- Specialized connective tissues
 - Cartilage
 - Transition tissue from which bone develops
 - Maintains the shape of certain body parts and protects and cushions joints
 - Consists primarily of collagen fibers
 - Produced by chondroblasts
 - Ground substance contains a lot more water
 - Cells are enclosed in small chambers called lacunae
 - No blood vessels
 - Mature cells obtain their nutrition only by diffusion through the ground substance
 - Heals slowly when injured
 - o Bone
 - Contains only a few living cells
 - Consists of hard mineral deposits of calcium and phosphate
 - Contains numerous blood vessels
 - Can heal quicker
 - o Blood
 - Cells suspended in **plasma**
 - Red blood cells transport oxygen, nutrients and waste products
 - White blood cells: function in the immune system
 - Platelets: cause blood to clot following an injury
 - Adipose tissue

- Fat storage
- Almost no fibers and ground substance
- Adipocytes (fat cells)
- Layer of insulation under the skin
- Protective layer around internal organs
- Weight loss reduces the volume of fat cells, but not their number

4.4. Muscle tissue

- Cells that are specialized to shorten (contract), resulting in movement
- Composed of **muscle fibers**
- 3 types:
 - Skeletal muscle tissue
 - Connects to tendons, which attach to bones
 - Causes body parts to move
 - Each muscle fiber has many nuclei
 - Voluntary: conscious control over its activity
 - Cardiac muscle tissue
 - Found only in the heart
 - Only one nucleus
 - Involuntary: heart can contract rhythmically on its own

• Smooth muscle tissue

- Surrounds hollow organs and tubes
 - Blood vessels, digestive tract, uterus, bladder
- Only one nucleus
- In blood vessels:
 - Generally aligned in a circular fashion around the vessel
 - When smooth muscle cells shorten, the diameter of the blood vessel is reduced
- Gap junctions between cells, so that nearby cells contract as well
- Involuntary

4.5. Nervous tissue

- Cells that are specialized for generating and transmitting electrical impulses
- Located in the brain, the spinal cord and the nerves
- Nervous tissue cells = **neurons**
 - Cell body: contains nucleus
 - **Dendrites**: receive signals from other neurons
 - Axon: transmits electrical impulses over long distances
- **Glial cell**: supporting role by surrounding and protecting neurons and supplying them with nutrients

4.6. Organs and organ systems

• **Organs:** structures composed of 2 or more tissue types joined together that perform a specific function or functions

- **Organ systems**: groups of organs that together serve a broad function that is important to survival either of the individual organism or of the species (reproduction)
 - 1) Integumentary System (Chapter 4)
 - 2) Skeletal System (Chapter 5)
 - 3) Muscular System (Chapter 6)
 - 4) Circulatory System (Chapter 8)
 - 5) Lymphatic System (Chapter 9)
 - 6) Respiratory System (Chapter 10)
 - 7) Nervous System (Chapter 11)
 - 8) Endocrine System (Chapter 13)
 - 9) Digestive System (Chapter 14)
 - 10) Urinary System (Chapter 15)
 - 11) Reproductive System (Chapter 16)

• Tissue membranes

- line body cavities
- o form our skin
- o consist of layer of epithelial tissue and connective tissue
- Types:
 - Serous
 - line and lubricate body cavities to reduce friction between internal organs
 - Mucous
 - Line the airways, digestive tract and reproductive passages
 - mucus lubricates the membrane's surface and entraps foreign particles
 - Synovial
 - Line the very thin cavities between bones in movable joints
 - Secrete a watery fluid that lubricates the joint
 - Cutaneous
 - Outer covering (= skin)
 - Several functions
- Body cavities
 - Figure 4.8, HB p. 87
- Describing body position or direction
 - Figure 4.9, HB p. 90

4.7. The skin as an organ system

- Integumentary system = skin + accessory structures (hair, nails, glands)
- Functions:
 - Protection from dehydration
 - Protection from injury
 - o Defense against invasion by bacteria and viruses
 - Regulation of body temperature

- Synthesis of an inactive form of vitamin D
- Sensation: provides information about the external world via receptors for touch, vibration, pain and temperature
- Outer layer of epithelial tissue = epidermis
 - Constantly being replaced as cells near the base of the epidermis divide repeatedly, pushing older cells toward the surface
 - Keratinocytes (= basal cells)
 - produce keratin (protein)
 - move toward the skin surface, die and dry out
 - epidermis lacks blood vessels, so cells no longer obtain nutrients as they move farther away from the dermis
 - dead cells are shed over time
 - create a nearly waterproof barrier that covers and protects the living cells below
 - allows the skin to heal quickly after injury
 - o melanocytes
 - produce melanin (pigment)
 - protects us against the sun's ultraviolet radiaton
 - enables people to develop a suntan
 - racial differences in skin color reflect differences in melanocyte activity or in the rate of breakdown of melanin
- Outer layer of connective tissue = **dermis**
 - o Primarily dense connective tissue
 - Fibers allow the skin to stretch when we move and give it strength to resist abrasion and tearing
 - o Becomes less flexible as we age, because the number of fibers decreases
 - **Fibroblasts** in dermis produce fibers
 - Other structures:
 - Hair: shaft + root + follicle
 - Smooth muscle: contracts when you are frightened or cold
 - Sebaceous glands: secrete an oily fluid that moistens and softens hair and skin
 - Sweat glands: produce sweat, which helps regulate body temperature and protect against bacteria
 - Blood vessels: supply the cells of the dermis and epidermis with nutrients and remove their wastes + help regulate body temperature
 - Sensory nerve endings: provide information about the outside environment
- Supporting layer of loose connective tissue containing fat cells = hypodermis

4.8. Multicellular organisms must maintain homeostasis

- Internal environment: environment that surrounds the cells of a multicellular organism
- Every cell gets nutrients from the interstitial fluid and dumps wastes into it
- Composition of this fluid must be kept fairly constant to sustain life (= homeostasis)
- Homeostasis is maintained by **negative feedback** control systems

- Deviations from the desired condition are automatically detected and counteracted
- **Controlled variable**: any physical or chemical property that might vary and that must be controlled to maintain homeostasis
- **Sensor (receptor):** monitors the current value of the controlled variable and sends the information to the control center
- Control center: receives input from the sensor and compares it to the set point.
 Sends signals to an effector when the current value and the set point of the controlled variable differ
- Effector: takes the necessary action to correct the imbalance
- Positive feedback control systems
 - Relatively uncommon in living organisms
 - Change in the controlled variable sets in motion a series of events that amplify the original change, rather than returning it to normal
 - o Bvb: process of childbirth

CHAPTER 5: The Skeletal System

5.1. The skeletal system consists of connective tissue

- 3 types of connective tissue:
 - o Bones
 - Ligaments
 - Cartilage
- Bones
 - Consist of calcium minerals + living bone cells, nerves and blood vessels
 - 5 important functions:
 - Support
 - Movement
 - Protection
 - Formation of blood cells
 - Mineral storage
 - \circ Structure:
 - Diaphysis: cylindrical shaft
 - Contains **spongy bone** (latticework of **trabeculae**)
 - Long bones of the upper arms/legs: contain red bone marrow
 - Stem cells in red bone marrow produce red and white blood cells and platelets
 - Epiphysis: enlarged knob at each end
 - Compact bone forms the shaft and covers each end
 - Made of osteocytes arranged in rings in cylindrical structures (= osteons)
 - As bone becomes hard, osteocytes become trapped in lacunae
 - Osteocytes remain in contact with each other via thin canals (= canaliculi)
 - Central cavity in the shaft is filled with **yellow bone marrow**
 - Primarily fat that can be utilized for energy
 - Outer surface: **periosteum** (layer of connective tissue)
 - Contains bone-forming cells
 - In compact bone:
 - Osteocyte nearest the center of an osteon receive nutrients by diffusion from blood vessels that pass through a central canal
 - These cells pass nutrients on to adjacent cells via the gap junctions
 - Waste products produced by the osteocytes diffuse in the opposite direction and are removed from the bone by the blood vessels
 - In spongy bone:
 - Structure of spongy bone gives each osteocyte access to blood vessels in red bone marrow

• Ligaments

- Attach bone to bone
- Consist of dense fibrous connective tissue

- Confer strength to certain joints while still permitting movement of the bones in relation to each other
- Cartilage
 - Smoother and more flexible than bone
 - Found were support under pressure is important and where some movement is necessary
 - 3 types:
 - Fibrocartilage
 - Intervertebral disks, menisci
 - Hyaline cartilage
 - Embryonic structures that later become the bones
 - Elastic cartilage
 - Outer ear, epiglottis

5.2. Bone development begins in the embryo

- Fetus: first 2 months
 - Cartilage model forms out of hyaline cartilage by chondroblasts
- Fetus: at 2-3 months
 - Ossification: cartilage models are replaced by bone
 - After chondroblasts die, the matrix they produced gradually breaks down inside the future shaft of the bone, making room for blood vessels (= **osteoblasts**) to develop
 - Osteoblasts secrete:
 - osteoid, which forms internal structure and provides strength
 - enzymes that facilitate bones to become hard (hydroxyapatite)
- Childhood and adolescence
 - **Growth plate** (narrow strip of cartilage) remains in each epiphysis
 - Bone lengthens as the 2 growth plates migrate farther apart
- Bone development process is controlled by hormones, secreted by the endocrine glands
 - Childhood: growth hormone
 - Adolescence: sex hormones (testosterone and estrogen)
- At about age 18 in females and 21 in males
 - Sex hormones signal growth plates to stop growing
 - Cartilage is replaced by bone tissue

5.3. Mature bone undergoes remodeling and repair

- Osteoclast = bone-dissolving cells
- The areas from which bone has been removed attract new osteoblasts, which produce new bone
- Constant remodeling can actually change the shape of a bone
 - Compression stress on a bone (force of repeated jogging) causes tiny electrical currents within the bone → Stimulates bone-forming activity
 - → New bone is laid down in regions under high compressive stress and bone is resorbed in areas of low compressive stress
 - Final shape of the bone tends to match the compressive forces to which it is exposed

- Weight-bearing exercise increases bone mass and strength
- Rates of activity of osteoblasts and osteclasts in adulthood are regulated by hormones that function to maintain calcium homeostasis
 - Parathyroid hormone (PTH)
 - Stimulates osteoclasts
 - Calcitonin
 - Stimulates osteoblasts
- Repair of bones
 - When you break (fracture) a bone, the blood vessels supplying the bone bleed into the area, producing a mass of clotted blood (= **hematoma**)
 - Fibroblasts migrate to the area
 - Some fibroblasts become chondroblasts
 - They produce a tough fibrocartilage bond (= **callus**) between the 2 broken ends of the bone
 - Osteoclasts remove dead bone and blood cells of the hematoma
 - Osteoblasts create new bone
- Bones rarely break in the same place twice, because the repaired union remains slightly thicker than the original bone
- Repair process slows with age

5.4. The skeleton

- 4 types of bones:
 - Long bones (limbs and fingers)
 - Short bones (wrists)
 - Flat bones (cranial bones, sternum, ribs)
 - Irregular bones
- 3 functions of skeleton:
 - Support
 - Protection
 - o Permits movement
- Axial skeleton
 - o Skull
 - Cranial bones
 - Frontal bone
 - 2 parietal bones
 - 2 temporal bones
 - Sphenoid bone
 - Ethmoid bone
 - Occipital bone
 - Foramen magnum
 - Facial bones
 - 2 maxilla bones
 - 2 palatine bones

- Vomer bone
- 2 zygomatic bones
- 2 nasal bones
- Lacrimal bones
- Mandible (lower jaw)
- Air spaces (**sinuses**)
- Vertebral column
 - Main axis of the body
 - Supports the head
 - protects the spinal cord
 - serves as the site of attachment for the four limbs and various muscles
 - 33 irregular bones called vertebrae
 - 5 regions:
 - **Cervical** (neck) 7 vertebrae
 - Thoracic (chest) 12 vertebrae
 - Lumbar (lower portion of the back) 5 vertebrae
 - Sacral (sacrum or upper pelvic region) 5 fused vertebrae
 - Coccygeal (coccyx or tailbone) 4 fused vertebrae
 - Vertebrae share 2 points of contact (= articulations)
 - Intervertebral disks: shock absorbers + give flexibility
 - When intervertebral disk presses against nerve: hernia
- Ribs and sternum
 - 12 pairs of ribs
 - Upper 7 attach via cartilage to the **sternum** (breastbone)
 - 8-10 are joined to the 7th rib by cartilage
 - Bottom 2 = floating ribs
 - Ribs, sternum and vertebral column form a protective rib cage

• Appendicular skeleton

- Pectoral girdle
 - Supporting frame for the upper limbs
 - Right and left clavicles (collarbones)
 - Right and left scapulas (shoulder blades)
 - Arm and hand
 - Humerus
 - Ulna and radius
 - 8 carpal bones (wrist)
 - 5 metacarpal bones (hand)
 - 14 phalanges (finger bones)
 - Carpal tunnel syndrome = due to repetitive typing at a keyboard
- Pelvic girdle
 - Two coxal bones join in the pubic symphisis
 - Sacrum (pelvis)
 - Function:
 - support the weight of the upper body against the force of gravity

- protects the organs inside the pelvic cavity
- serves as a site of attachment for the legs
- femur (thighbone)
- patella (knee cap)
- tibia + fibula (lower leg)
- 7 tarsals (ankle)
- 5 metatarsals (foot)
- 14 phalanges (toe bones)

5.6. Diseases and disorders of the skeletal system

- Sprain
 - o due to stretched or torn ligaments
 - o often accompanied by internal bleeding (bruising, swelling, pain)
 - o heal slowly

• bursitis and tendinitis

- o inflammation of the bursae or tendons following injury
- o causes:
 - tearing injuries to tendons
 - physical damage caused by blows to the joint
 - bacterial infections
- o heal slowly
- o causes "tennis elbow"
- Arthritis
 - Joint inflammation
 - **Osteoarthritis** (most common type)
 - Cartilage covering the ends of the bones wears out
 - Restricts joint movement
 - Joint becomes inflamed and painful
 - Rheumatoid arthritis
 - Joint inflammation caused by the body's own immune system
- Osteoporosis
 - o Caused by excessive bone loss
 - Leads to brittle, easily broken bones over time
 - Higher risk in older women: decline in estrogen after menopause
 - Can be prevented:
 - Get enough calcium and vitamin D
 - Maintain a constant exercise program
 - Medication

CHAPTER 6: The Muscular System

- Skeletal muscles
 - Attach to the skeleton
 - Give strength and mobility
 - Sculpt the body
- Cardiac muscle
 - Pumps blood throughout the body
- Smooth muscle
 - Propels the child through the birth canal
 - Pushes food through the digestive tract
 - o Transports urine from the kidney to the bladder
 - $\circ \quad \text{Regulates blood flow} \quad$

6.1. Muscles produce movement or generate tension

- Muscle movements are voluntary or involuntary
- Muscles:
 - o Produce movement
 - o resist movement
 - $\circ \quad \text{generate heat} \quad$
- Features:
 - Muscle cells are excitable
 - Contract in response to chemical/electrical signals from other organ systems
 - They contract (shorten), and then they relax (return to original length)
- They cor
 Skeletal muscles
 - \circ $\ \$ cause bones to move (or prevent them from moving) relative to each other
 - Synergistic muscles = muscle groups that work together to create the same movement
 - Antagonistic muscles = muscles that oppose each other
 - o Most skeletal muscles are attached to bones via tendons
 - Each individual muscle produces a very specific movement of one bone relative to another
 - One end of a skeletal muscle (**origin**) joins to a bone that remains relatively stationary
 - The other end of the muscle (insertion) attaches to another bone across a joint
 → when the muscle contracts, the insertion is pulled toward the origin
- Single muscle
 - group of individual muscle cells (muscle fibers), all with the same origin/insertion and same function
 - o arranged in bundles (fascicles), enclosed in fascia (fibrous connective tissue)
 - At the ends of the muscle all of the fasciae come together, forming the tendons that attach the muscle to bone
- Single muscle cell
 - \circ ~ Each cell contains more than one nucleus
 - Entire interior of the cell is packed with myofibrils

- Contain contractile proteins (actin and myosin)
- When myofibrils contract (shorten), the muscle cell also shortens

6.2. Individual muscle cells contract and relax

- Muscle contraction requires energy (ATP)
- In the presence of calcium, myosin splits ATP (ATP \rightarrow ADP + P_i + energy)
- Energy is used to energize the myosin head so that it can form a cross-bridge and undergo bending
- Once bending has occurred, another molecule of ATP binds to myosin, which causes the myosin head to detach from actin
- Result: shortening of the sacromere
- At the end of the contractile period, energy is used to transport calcium back into the sarcoplasmic reticulum so that relaxation can occur
- An intact molecule of ATP must bind to myosin before myosin can detach from actin
 - Explains rigor mortis
- Energy sources for muscle cells (table 6.1, HB p. 128)
 - Stored ATP
 - Stored in small quantities
 - About 10 seconds
 - Must be replenished by other energy sources
 - Stored creatine phosphate
 - 3 to 5 times amount of stored ATP
 - About 30 seconds
 - Converted quickly to ATP
 - Stored glycogen
 - Variable quantity
 - Primarily used during heavy exercise within the first 3-5 minutes
 - One glucose molecule yields only 2 ATP in the absence of oxygen (anaerobic metabolism)
 - o Aerobic metabolism
 - Not a stored form of energy
 - Always present
 - One glucose molecule yields 36 ATP (aerobic metabolism)
- After exercise: heavy breathing for a period of time
 - Helps reverse your body's oxygen debt
 - muscles used more ATP than was provided by aerobic metabolism
 - anaerobic metabolism produced lactic acid
 - after exercise, you need oxygen to metabolize the lactic acid by aerobic pathways and to replenish energy stores
- **Muscle fatigue** = decline in muscle performance during sustained exercise
 - Causes:
 - lack of sufficient ATP to meet metabolic demands
 - psychological factors

6.3. The activity of muscles can vary

- isotonic contractions:
 - o whenever a muscle shortens while maintaining a constant force
 - o movement
- isometric contractions:
 - force is generated, muscle tension increases
 - o bones and objects do not move (maintaining a static position)
 - o useful to strengthen muscles
- each group of muscle cells is controlled by a single nerve cell (motor neuron)
- motor unit = motor neuron + all the cells it controls
- when the motor neuron is activated, all the muscle cells in that motor unit are activated together
- how much tension is generated by a muscle depends on:
 - o number of muscle cells in each motor unit
 - larger motor units generate more force but offer less control
 - all-or-none principle: muscle cells never contract on their own
 - muscle cells always respond with a complete cycle of contraction and relaxation (= a twitch) every time they are stimulated by an action potential
 - Whole muscles generally maintain an intermediate level of force known as muscle tone
 - o number of motor units active
 - increasing tone (or force) by activating more motor units = recruitment
 - o frequency of stimulation of individual motor units
 - laboratory recording of muscle activity = a myogram
 - Stimulus-twitch relationship has 3 stages:
 - Latent period
 - Contraction
 - Relaxation
 - Contraction/relaxation cycle of the muscle lasts longer than the stimulus that caused the contraction
 - If additional stimuli arrive at the muscle before the muscle is completely relaxed again, the total force produced becomes greater than the force produced by one twitch alone (= summation)
 - If stimulation becomes so frequent that the muscle cannot relax at all, it will remain in a state of maximum contraction (= tetanus or titanic contraction)

6.4. Cardiac and smooth muscles have special features

- Cardiac and smooth muscles are involuntary muscle
- Cardiac muscles
 - Those with the fastest rhythm = **pacemaker cells**
 - Rest of the cells follow their faster pace
 - Intercalated discs contain gap junctions that permit one cell to electrically stimulate the next one

- Smooth muscles
 - o Also joined by gap junctions that permit the cells to activate each other
- Cardiac and smooth muscle do respond to stimulation by nerves as well
 - Effect may be either inhibitory or stimulatory
 - Nerve stimulation can also change the contractile force of smooth muscle
- Speed and sustainability of contraction
 - Speed and sustainability: skeletal > cardiac > smooth muscle
 - \circ $\;$ Cardiac muscle cells: cycles of contraction and relaxation
 - necessary so that the muscle doesn't fatigue
 - Smooth muscle: partially contracted all the time
 - Almost never fatigues because it contracts so slowly that its ATP usage is always less than its production capability
- Arrangement of myosin and actin filaments
 - Cardiac and skeletal muscle: Regular array of thick and thin filaments arranged in sarcomeres (**striated muscle**)
 - Smooth muscle: thick and thin filaments are arranged in bundles that attach at various angles to the cell membrane

CHAPTER 7: Blood

• Circulatory system = heart + blood vessels + blood

7.1. The components and functions of blood

- **Blood** = specialized connective tissue
- 3 functions:
 - o Transportation
 - Oxygen, nutrients, hormones, waste products
 - Regulation
 - Body temperature, volume of water, pH of body fluids
 - o **Defense**
 - Protection against infections and illness, prevent excessive blood loss
- Adults: 5-6L (males) / 4-5L (females) of blood
- Plasma (55%)
 - Water (90% of plasma)
 - Electrolytes (ions): sodium, calcium, potassium, ...
 - o Proteins
 - Albumins
 - Maintain blood volume and transport electrocytes, hormones and wastes
 - Globulins
 - Serve as antibodies and transport substances
 - clotting proteins
 - contribute to blood clotting
 - o Hormones
 - Gases (O₂, CO₂, NO)
 - Nutrients (glucose) and waste
- Formed elements (45%)
 - Red blood cells (RBC's)
 - White blood cells (WBC's)
 - Platelets
- Red blood cells (RBC's)
 - o = erythrocytes
 - \circ transport O₂ and CO₂
 - o shape makes them flexible
 - have no nucleus or organelles
 - o hemoglobin
 - concentration of protein
 - 4 polypeptide chains, each containing a heme group (iron in heme group can bond with an O₂ molecule)
 - M: 14-18 gr/dl V: 12-15 gr/dl
 - Lung: O₂ diffuses into blood plasma and then into RBC's
 - O₂ attaches to the iron atoms

- Binding removes some O₂ from the plasma, making room for more O₂ to diffuse into the plasma
 - \rightarrow Hemoglobin with 4 O₂ molecules = **oxyhemoglobin** (bright red color)
- in body tissues, concentration of dissolved O₂ and Ph are lower
- hemoglobin releases O₂ into body tissues
 - \rightarrow Hemoglobin that has given up its O₂ = **desoxyhemoglobin** (dark red color)
- also transports some CO₂
- o hematocrit
 - percentage of blood that consists of red blood cells
 - relative measure of the oxygen-carrying capacity of blood
 - low hematocrit may signal anemia (underproduction of RBC's)
 - high hematocrit may signal polycythemia (overproduction of RBC's) and increases risk of blood clots
- All blood cells and platelets originate from **stem cells** in the red bone marrow

RBC's have a short life span

- Stem cells → erythroblasts → RBC's
- Cannot reproduce \rightarrow all new RBC's must originate from dividing stem cells
- Live for only ±120 days (due to lack of nucleus)
- RBC's must be produced throughout life
- Old and damaged RBC's are destroyed in the liver and spleen by macrophages
 = phagocytosis
- RBC's recycled:
 - Amino acids used to produce new proteins
 - Iron molecules returned to red bone marrow
 - o Heme group → bilirubin (yellow pigment)
 - transported to liver and eliminated via feces
 - can cause jaundice

RBC production is regulated by a hormone

- = negative feedback control loop
- Cells in the kidneys monitor availability of oxygen
- Low oxygen availability signals the cells to secrete erythropoietin (EPO)
 - o EPO stimulates stem cells to produce more RBC's
- When oxygen-carrying capacity of blood rises again, cells cut back on EPO production

 RBC production decreases
- Injecting commercial EPO to increase RBC production = **blood doping**

White blood cells defend the body

- 1% of whole blood = WBC's (leukocytes)
- Have a nucleus, but no hemoglobin

- Crucial role in defending the body against disease and injury
- Granular leukocytes (granulocytes) and agranular leukocytes (agranulocytes)
 - Contain granules (vesicles) that are filled with enzymes
- Mature in red bone marrow (exception: T-lymphocytes mature in the thymus gland)
- Life span: a few hours to 9 days (agranular live longer than granular)
- Dead and injured WBC's: removed by liver and spleen
- Level of WBC's rises when body is attacked
 - WBC's produce chemicals that circulate in blood back to bone marrow, where they stimulate production of WBC's
- •