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You might think you need

calculus to determine the

area between the tire

tracks made by this bike,

ridden by Jason McIlhaney,

BS 2000.  Surprisingly,

geometry offers another

way of solving it—without

formulas.
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Calculus is a beautiful subject with a host of
dazzling applications.  As a teacher of calculus for
more than 50 years and as an author of a couple of
textbooks on the subject, I was stunned to learn
that many standard problems in calculus can be
easily solved by an innovative visual approach that
makes no use of formulas.  Here’s a sample of three
such problems:

Problem 1.  Find the area of the region under an
exponential curve.  In the graph of the exponential
function y = ex,  below, we want the area of the
blue region between the curve and the x-axis and
along the interval from minus infinity up to any
point x.  Integral calculus reveals that the answer
is ex.  And if the equation of the curve is y = ex/b,
where b is any positive constant, integration tells
us the area is b times ex/b.

you have to find an equation for the cycloid, which
is not exactly trivial.  Then you have to integrate
this to get the required area.  The answer is three
times the area of the rolling circular disk.

Problem 2.  Find the area of a parabolic segment
(left)—the purple region below the graph of the
parabola y = x2 from 0 to x.  The area of the para-
bolic segment was first calculated by Archimedes
more than 2000 years ago by a method that laid
the foundations for integral calculus.  Today, every
freshman calculus student can solve this problem:
Integration of x2 gives x3/3.

Problem 3.  Find the area of the region under
one arch of a cycloid (next column).  A cycloid is
the path traced out by a fixed point on the boun-
dary of a circular disk that rolls along a horizontal
line, and we want the area of the region shown in
blue.  This problem can also be done by calculus
but it is more difficult than the first two.  First,

These classic problems can also be solved by a
new method that relies on geometric intuition and
is easily understood even by very young students.
You don’t need any equations.  Moreover, the new
method also solves some problems that can’t be
done with calculus.

The method was conceived in 1959 by
Mamikon A. Mnatsakanian, then an undergradu-
ate at Yerevan University in Armenia.  When he
showed his method to Soviet mathematicians they
dismissed it out of hand and said, “It can’t be
right—you can’t solve calculus problems that
easily.” He went on to get a PhD in physics, was
appointed a professor of astrophysics at the Uni-
versity of Yerevan, and became an international
expert in radiative transfer theory.  He also con-
tinued to develop his powerful geometric meth-
ods.  He eventually published a paper outlining
them in 1981, but it seems to have escaped notice,
probably because it appeared in Russian in an
Armenian journal with limited circulation
(Proceedings of the Armenian Academy of Sciences, vol.
73, no. 2, pages 97–102).

Mamikon came to California about a decade ago
to work on an earthquake-preparedness program
for Armenia, and when the Soviet government
collapsed, he was stranded in the United States
without a visa.  With the help of a few mathemati-
cians in Sacramento and at UC Davis, he was

A Visual  Approach to Calculus Problems
by Tom M. Apostol
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granted status as an “alien of extraordinary
ability.”  While working for the California Depart-
ment of Education and at UC Davis, he further
developed his methods into a universal teaching
tool using hands-on and computer activities, as
well as pictures.  He has taught these methods at
UC Davis and in Northern California classrooms,
ranging from Montessori elementary schools to
inner-city public high schools, and he has dem-
onstrated them at teacher conferences.  Students
and teachers alike have responded enthusiastically,
because the methods are vivid and dynamic and
don’t require the algebraic formalism of trigo-
nometry or calculus.

About four years ago, Mamikon showed up at
Project MATHEMATICS! headquarters and con-
vinced me that his methods have the potential to
make a significant impact on mathematics edu-
cation, especially if they are combined with
visualization tools of modern technology.  Since
then we have published several joint papers on
innovative ideas in elementary mathematics.

Like all great discoveries, the method is based
on a simple idea.  It started when young Mamikon
was presented with the classical geometry prob-
lem, involving two concentric circles with a chord
of the outer circle tangent to the inner one, illus-
trated at left.  The chord has length a, and the
problem is: Find the area of the ring between the
circles.  As the late Paul Erdös would have said,
any baby can solve this problem.  Now look at the
diagram below it.  If the inner circle has radius r
its area is πr2, and if the outer circle has radius R,
its area is πR2, so the area of the ring is equal to
πR2 –  πr2 = π(R2 – r2).  But the two radii and the
tangent form a right triangle with legs r and a/2
and hypotenuse R, so by the Pythagorean Theo-
rem, R2 – r2 = (a/2)2, hence the ring has the area
πa2/4.  Note that the final answer depends only on
a and not on the radii of the two circles.

If we knew in advance that the answer depends
only on a, we could find it another way:  Shrink

the inner circle to a point, and the ring collapses
to a disk of diameter a, with an area equal to
πa2/4.

Mamikon wondered if there was a way to see
why the answer depends only on the length of the
chord.  Then he thought of formulating the prob-
lem in a dynamic way.  Take half the chord and
think of it as a vector of length L tangent to the
inner circle.  By moving this tangent vector
around the inner circle, we see that it sweeps out
the ring between the two circles.   (But it’s ob-
vious that the area is being swept due to pure
rotation.)  Now, translate each tangent vector
parallel to itself so that the point of tangency is
brought to a common point.  As the tangent
vector moves around the inner circle, the trans-
lated vector rotates once around this common
point and traces out a circular disk of radius L.
So the tangent vectors sweep out a circular disk as
though they were all centered at the same point, as
illustrated below.  And this disk has the same area
as the ring.

Mamikon realized that this dynamic approach
would also work if the inner circle was replaced by
an arbitrary oval curve.  Below you can see the
same idea applied to two different ellipses.  As the
tangent segment of constant length moves once
around each ellipse, it sweeps out a more general
annular shape that we call an oval ring.
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Again, we can translate each tangent segment
parallel to itself so that the point of tangency is
brought to a common point.  As the tangent
moves around the oval, the translated segments
trace out a circular disk whose radius is that con-
stant length.  So, the area of the oval ring should
be the area of the circular disk.

The Pythagorean Theorem can’t help you find
the areas for these oval rings.  If the inner oval is
an ellipse, you can calculate the areas by integral
calculus (which is not a trivial task); if you do so,
you’ll find that all of these oval rings have equal
areas depending only on the length of the tangent
segment.

Is it possible that the same is true for any convex
simple closed curve?  The diagram below illus-
trates the idea for a triangle.

The same is true for any convex polygon, as
illustrated above.

 The area of the region swept out by a tangent
segment of given length moving around any
convex polygon is equal to the area of a circular
disk whose radius is that length.  Therefore the
same is true for any convex curve that is a limit
of convex polygons.  This leads us to

Mamikon’s Theorem for Oval Rings:  All oval
rings swept out by a line segment of given length with
one endpoint tangent to a smooth closed plane curve have
equal areas, regardless of the size or shape of the inner
curve.  Moreover, the area depends only on the length L
of the tangent segment and is equal to πL2, the area of a
disk of radius L, as if the tangent segment was rotated
about its endpoint.

Incidentally, Mamikon’s theorem for oval rings
provides a new proof of the Pythagorean Theorem,
as illustrated at right.

If the inner curve is a circle of radius r, the outer
curve will also be a circle (of radius R, say), so the
area of the oval ring will be equal to the difference
πR2 – πr2.   But by Mamikon’s theorem, the area of
the oval ring is also equal to πL2, where L is the
constant length of the tangent segments.  By
equating areas we find R2 – r2 = L2, from which we
get R2 = r2 + L2, the Pythagorean Theorem.

Now we can illustrate a generalized version of
Mamikon’s theorem.  The lower curve in the
diagram at the top of the next page is a more or
less arbitrary smooth curve.  The set of all tangent
segments of constant length defines a region that
is bounded by the lower curve and an upper curve
traced out by the segment’s other extremity.  The

As the tangent segment moves along an edge,
it doesn’t change direction so it doesn’t sweep out
any area.  As it moves around a vertex from one
edge to the next, it sweeps out part of a circular
sector.  And as it goes around the entire triangle,
it sweeps out three circular sectors that, together,
fill out a circular disk, as shown to the right.

Left:  Students at the Southland Park Montessori Elemen-

tary School in Sacramento play with magnetic manipulative

wedges, shaping them into a circular disk.  Pushing with

your finger in the center can turn it into an oval ring of

any shape.
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exact shape of this region will depend on the lower
curve and on the length of the tangent segments.
We refer to this region as a tangent sweep.

When each segment is translated to bring the
points of tangency together as before, as shown in
the right-hand diagram above, the set of translated
segments is called the tangent cluster.  When the
tangent segments have constant length, as in this
figure, the tangent cluster is a circular sector
whose radius is that constant length.

 By the way, we could also translate the seg-
ments so that the other endpoints are brought to a
common point.  The resulting tangent cluster
would be a symmetric version of the cluster in the
right-hand figure.  Now we can state

 Mamikon’s Theorem:  The area of a tangent
sweep is equal to the area of its tangent cluster, regardless
of the shape of the original curve.

You can see this in a real-world illustration
when a bicycle’s front wheel traces out one curve
while the rear wheel (at constant distance from the
front wheel) traces out another curve, as below.  To
find the area of the region between the two curves
with calculus, you would need equations for both
curves, but we don’t need any here.  The area of
the tangent sweep is equal to the area of a circular
sector depending only on the length of the bicycle
and the change in angle from its initial position to

its final position, as shown in the tangent cluster
to the right.  The shape of the bike’s path does not
matter.

The next diagram illustrates the same idea in a
more general setting.  The only difference is that
the tangent segments to the lower curve need not
have constant length.  We still have the tangent
sweep (left) and the tangent cluster.

Mamikon’s theorem, which seems intuitively
obvious by now, is that the area of the tangent
cluster is equal to the area of the tangent sweep.
(To convince yourself, consider corresponding
equal tiny triangles translated from the tangent
sweep to the tangent cluster.)

In the most general form of Mamikon’s theorem
the given curve need not lie in a plane.  It can be
any smooth curve in space, and the tangent
segments can vary in length.  The tangent sweep
will lie on a developable surface, one that can be
rolled out flat onto a plane without distortion.
The shape of the tangent sweep depends on how
the lengths and directions of the tangent segments
change along the curve; the tangent cluster lies on
a conical surface whose vertex is the common
point.  Mamikon’s general theorem equates the
area of the tangent sweep with that of its tangent
cluster.

Right:  Mamikon helps

children at the Montessori

School trace a tractrix

with a bicycle.
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General Form of Mamikon’s Theorem:  The
area of a tangent sweep to a space curve is equal to the
area of its tangent cluster.

This theorem, suggested by geometric intuition,
can be proved in a traditional manner—by using
differential geometry, for example.  My first
reaction to this theorem was, “OK, that’s a cool

result in geometry.  It must have some depth
because it implies the Pythagorean

Theorem. Can you use it to do
anything else that’s
interesting?”

It turns out that
you can apply this
theorem in all sorts
of interesting ways.

As already mentioned, curves swept out by tan-
gent segments of constant length include oval
rings and the bicycle-tire tracks.  Another such
example is the tractrix, the trajectory of a toy on
a taut string being pulled by a child walking in a
straight line, as shown above.  To find the area of
the region between the tractrix and the x-axis
using calculus, you have to find the equation of
the tractrix.  This in itself is rather challenging—
it requires solving a differential equation.  Once
you have the equation of the tractrix, you have to
integrate it to get the area.  This also can be done,
but the calculation is somewhat demanding; the
final answer is simply πL2/4, where L is the length
of the string.  But we can see that the tractrix is a
particular case of the “bicyclix,” so its swept area
is given by a circular sector, and its full area is a
quarter of a circular disk.

All the examples with tangents of constant
length reveal the striking property that the area
of the tangent cluster can be expressed in terms of
the area of a circular sector without using any of
the formal machinery of traditional calculus.

But the most striking applications are to exam-
ples in which the tangent segments are of variable

length.  These examples reveal the true power of
Mamikon’s method.  This brings us to Problem 1:
exponential curves.  Exponential functions are
ubiquitous in the applications of mathematics.
They occur in problems concerning population
growth, radioactive decay, heat flow, and other
physical situations where the rate of growth of a
quantity is proportional to the amount present.
Geometrically, this means that the slope of the
tangent line at each point of an exponential curve
is proportional to the height of the curve at that
point.  An exponential curve can also be described
by its subtangent, which is the projection of the
tangent on the x-axis.  The diagram at the bottom
of the left-hand column shows a general curve
with a tangent line and the subtangent.  The slope
of the tangent is the height divided by the length
of the subtangent.  So, the slope is proportional
to the height if and only if the subtangent is
constant.

The next diagram, at the bottom of this column,
shows the graph of an exponential curve y = ex/b,
where b is a positive constant.  The only property
of this curve that plays a role in this discussion is
that the subtangent at any point has a constant
length b.  This follows easily from differential
calculus, but it can also be taken as the defining
property of the exponential.  In fact, exponential
curves were first introduced in 1684 when Leibniz
posed the problem of finding all curves with
constant subtangents.  The solutions are the
exponential curves.

By exploiting the fact that exponential curves
have constant subtangents, we can use Mamikon’s
theorem to find the area of the region under an
exponential curve without using integral calculus.
The diagram below shows the graph of the expo-
nential curve y = ex/b together with its tangent
sweep as the tangent segments, cut off by the x-
axis, move to the left, from x all the way to minus
infinity.  The corresponding tangent cluster is
obtained by translating each tangent segment to
the right so that the endpoint on the x-axis is
brought to a common point, in this case, the lower
vertex of the right triangle of base b and altitude
ex/b.  The resulting tangent cluster is the triangle of
base b and altitude ex/b.  Therefore the area of the
blue region is equal to the area of the yellow right
triangle, so the area of the region between the
exponential curve and the interval (from minus
infinity to x) is equal to twice the area of this right
triangle, which is its base times its altitude,
or bex/b, the same result you would
get by integration.
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This yields the astonishing result that the area
of the region under an exponential curve can be
determined in an elementary geometric way
without the formal machinery of integral calculus.

We turn now to our second problem, perhaps
the oldest calculus problem in history—finding
the area of a parabolic segment, the purple region
at left, below.  The parabolic segment is inscribed
in a rectangle of base x and altitude x2.  The area
of the rectangle is x3.  From the figure we see that
the area of the parabolic segment is less than half
that of the rectangle in which it is inscribed.
Archimedes made the stunning discovery that the
area is exactly one-third that of the rectangle.
Now we will use Mamikon’s theorem to obtain the
same result by a method that is not only simpler
than the original treatment by Archimedes but
also more powerful because it can be generalized
to higher powers.

This parabola has the equation y = x2, but we
shall not need this formula in our analysis.  We
use only the fact that the tangent line above any
point x cuts off a subtangent of length x/2, as
indicated in the lower diagram.  The slope of the
tangent is x2 divided by x/2, or 2x.

To calculate the area of the parabolic segment
we look at the next figure in which another
parabola y = (2x)2 has been drawn, exactly half as
wide as the given parabola.  It is formed by
bisecting each horizontal segment between the
original parabola and the y axis.  The two parabo-
las divide the rectangle into three regions, and our
strategy is to show that all three regions have
equal area.  If we do this, then each has an area

one-third that of the circumscribing rectangle,
as required.

 The two shaded regions formed by the bisect-
ing parabola obviously have equal areas, so to
complete the proof we need only show that the
region above the bisecting parabola has the same
area as the parabolic segment below the original
parabola.  To do this, let’s look at the next dia-
gram, below.  The right triangles here have equal
areas (they have the same altitude and equal bases).
Therefore the problem reduces to showing that the
two shaded regions in this diagram have equal
areas.  Here’s where we use Mamikon’s theorem.

The shaded portion under the parabola y = x2 is
the tangent sweep obtained by drawing all the
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tangent lines to the parabola and cutting them off
at the x-axis.  And the other shaded portion is its
tangent cluster, with each tangent segment trans-
lated so its point of intersection with the x axis is
brought to a common point, the origin.

 At a typical point (t, t2) on the lower parabola,
the tangent intersects the x-axis at t/2.  Therefore,
if the tangent segment from (t/2, 0) to (t, t2) is
translated left by the amount t/2, the translated
segment joins the origin and the point (t/2, t2) on
the curve y = (2x)2.  So the tangent cluster of the
tangent sweep is the shaded region above the curve
y = (2x)2, and by Mamikon’s theorem the two
shaded regions have equal areas, as required.  So we
have shown that the area of the parabolic segment

is exactly one-third that of the circumscribing
rectangle, the same result obtained by Archimedes.

The argument used to derive the area of a
parabolic segment also extends to generalized
parabolic segments, in which x2 is replaced by
higher powers.  The graphs of y = x3 and y = (3x)3

at left divide the rectangle of area x4 into three
regions.  The curve y = (3x)3 trisects each horizontal
segment in the figure, hence the area of the region
above this curve is half that of the region between
the two curves.  In this case we will show that the
area of the region above the trisecting curve is
equal to that below the original curve, which
means that each region has an area one-fourth that
of the circumscribing rectangle.

To do this we use the fact that the subtangent
is now one-third the length of the base, as shown
below.  One shaded region is the tangent sweep of
the original curve, and the other is the correspond-
ing tangent cluster, so they have equal areas.  The
right triangles are congruent, so they have equal
areas.  Therefore the region above the trisecting
curve has the same area as the region below the
curve y = x3, and each is one-fourth that of the
rectangle, or x4/4.  The argument also extends to
all higher powers, a property not shared by Archi-
medes’ treatment of the parabolic segment.  For
the curve y = xn we use the fact that the subtangent
at x has length x/n.

We turn next to our third standard calculus

With Mamikon’s help, the Montessori schoolchildren built

this 60-foot-long suspension bridge.  Using themselves as

weight, they are illustrating how heavy loading changes the

shape of the cable from a catenary (the curve normally

formed by hanging a chain from both ends) to a parabola.

Such a “breakdown” occurred during the 50th-anniversary

celebration of the Golden Gate Bridge in 1987.
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problem—the cycloid, the curve traced out by a
point on the perimeter of a circular disk that rolls
without slipping along a horizontal line. We want
to show that the area of the region between one
arch of the cycloid and the horizontal line is three
times the area of the rolling disk (above), without
deriving an equation for the cycloid or using
integral calculus.

Below is a cycloidal arch inscribed inside a rec-
tangle whose altitude is the diameter d of the disk
and whose base is the disk’s circumference, πd.
The area of the circumscribing rectangle is πd2,
which is four times the area of the disk.  So it
suffices to show that the unshaded region above
the arch and inside the rectangle has an area equal
to that of the disk.

To do this, we show that the unshaded region is

tangency by P
0
, as in the diagram above, the

diameter PP
0
 divides the rolling circle into two

semicircles, and any triangle inscribed in these
semicircles must be a right triangle.  The disk
undergoes instantaneous rotation about P

0
, so the

tangent to the cycloid at any point X is perpen-
dicular to the instantaneous radius of rotation and
therefore must be a vertex of a right triangle
inscribed in the semicircle with diameter PP

0
.

Consequently, the chord XP of the rolling disk
is always tangent to the cycloid.

Extend the upper boundary of the circumscrib-
ing rectangle beyond the arch and choose a fixed
point O on this extended boundary.  Translate each
chord parallel to itself so that point P is moved
horizontally to the fixed point O.  Then the other
extremity X moves to a point Y such that segment
OY is equal in length and parallel to PX.  Conse-
quently, Y traces out the boundary of a circular
disk of the same diameter, with OY being a chord
equal in length and parallel to chord PX.  There-
fore the tangent cluster is a circular disk of the
same diameter as the rolling disk, and Mamikon’s
theorem tells us that its area is equal to that of the
disk.

These examples display a wide canvas of geo-
metric ideas that can be treated with Mamikon’s
methods, but seeing them static on a printed page
leaves something to be desired.  Animation,
clearly, is a better way to show how the method
works.  So we plan to use these examples in the
first of a series of contemplated videotapes under

the tangent sweep of the cycloid, and that the
corresponding tangent cluster is a circular disk of
diameter d.  By Mamikon’s theorem, this disk has
the same area as the tangent sweep.  Because the
area of the disk is one-fourth the area of the
rectangle, the area of the region below the arch
must be three-fourths that of the rectangle, or
three times that of the rolling disk.

It remains to show that the tangent cluster of
the unshaded region is a circular disk, as asserted.
As the disk rolls along the base it is always
tangent to the upper and lower boundaries of the
circumscribing rectangle.  If we denote the upper
point of tangency by P and the lower point of



31E N G I N E E R I N G  &  S C I E N C E  N O .  3   

the umbrella of Project MATHEMATICS!   Like all
videotapes produced by Project MATHEMATICS!,
the emphasis will be on dynamic visual images
presented with the use of motion, color, and
special effects that employ the full power of
television to convey important geometric ideas
with a minimal use of formulas.  The animated
sequences will illustrate how tangent sweeps are
generated by moving tangent segments, and how
the tangent segments can be translated to form
tangent clusters.  They will also show how many
classical curves are naturally derived from their
intrinsic geometric and mechanical properties.

Mamikon’s methods are also applicable to many
plane curves not mentioned above.  In subsequent
videotapes we plan to find full and partial areas of
the ellipse, hyperbola, catenary, logarithm,
cardioid, epicycloids, hypocycloids, involutes,
evolutes, Archimedean spiral, Bernoulli lemnis-
cate, and sines and cosines.  And we can find the
volumes of three-dimensional figures such as the
ellipsoid, the paraboloid, three types of hyperbo-
loids, the catenoid, the pseudosphere, the torus,
and other solids of revolution.

I’ll conclude with a small philosophical remark:
Newton and Leibniz are generally regarded as the
discoverers of integral calculus.  Their great
contribution was to unify work done by many
other pioneers and to relate the process of integra-
tion with the process of differentiation.  Mami-
kon’s method has some of the same ingredients,
because it relates moving tangent segments with
the areas of the regions swept out by those tangent
segments.  So the relation between differentiation
and integration is also embedded in Mamikon’s
method.  ■

Samples of the computer animation of the
problems shown in this article can be viewed at
http://www.its.caltech.edu/~mamikon/calculus.html

One of Mamikon’s 1959

hand sketches illustrates

how the volume of a

hyperboloid can be seen as

disected into an inscribed

cylinder and a “tangential”

cone (the tangents to the

cylinder).

Right:  Apostol in 1977.

Professor of Mathe-
matics, Emeritus, Tom
Apostol joined the Cal-
tech faculty in 1950.
On October 4, 2000,
a special mathematics
colloquium was held in
honor of his 50 years at
Caltech.  On that
occasion he delivered the talk that’s adapted here.
(Mamikon Mnatsakanian was also on hand to show his
computer animations.)

Apostol earned his BS in chemical engineering (1944)
and MS in mathematics (1946) from the University of
Washington.  His PhD, with a thesis in analytic
number theory, is from UC Berkeley (1948).  Before
beginning his 50 years at Caltech, he spent a year each
at Berkeley and MIT.

Apostol should know everything there is to know about
teaching calculus, even though he admits he was
surprised by this new approach.  For nearly four decades
Caltech undergraduates (as well as a couple of genera-
tions of mathematics students all over the country) have
learned calculus from his two-volume text, often referred
to as “Tommy 1” and “Tommy 2.”  These and his other
textbooks in mathematical analysis and analytic number
theory have been translated into Greek, Italian,
Spanish, Portuguese, and Farsi.

Although known nationally and internationally for
his written textbooks, Apostol turned to the visual media
in the 1980s as a member of the Caltech team that
produced The Mechanical Universe . . . and Beyond,
a 52-episode telecourse in college physics.  And he never
looked back.  He’s currently creator, director, and
producer of Project MATHEMATICS!, a series of
award-winning, computer-animated videotapes that are
used nationwide and abroad as support material in
high-school and community-college classrooms.


