
Chapter 1

Pythagoras Theorem
and Its Applications

1.1 Pythagoras Theorem and its converse

1.1.1 Pythagoras Theorem

The lengths a ≤ b < c of the sides of a right triangle satisfy the relation

a2 + b2 = c2.
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1.1.2 Converse Theorem

If the lengths of the sides of a triangles satisfy the relation a2+b2 = c2, then
the triangle contains a right angle.

1



YIU: Euclidean Geometry 2

a

b
c

a

b

Y

X

ZBC

A

Proof. Let ABC be a triangle with BC = a, CA = b, and AB = c satisfy-
ing a2 + b2 = c2. Consider another triangle XY Z with

Y Z = a, XZ = b, 6 XZY = 90◦.

By the Pythagorean theorem, XY 2 = a2 + b2 = c2, so that XY = c.
Thus the triangles 4ABC ≡ 4XY Z by the SSS test. This means that
6 ACB = 6 XZY is a right angle.

Exercise

1. Dissect two given squares into triangles and quadrilaterals and re-
arrange the pieces into a square.

2. BCX and CDY are equilateral triangles inside a rectangle ABCD.
The lines AX and AY are extended to intersect BC and CD respec-
tively at P and Q. Show that

(a) APQ is an equilateral triangle;

(b) 4APB +4ADQ = 4CPQ.
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3. ABC is a triangle with a right angle at C. If the median on the side
a is the geometric mean of the sides b and c, show that c = 3b.

4. (a) Suppose c = a+kb for a right triangle with legs a, b, and hypotenuse
c. Show that 0 < k < 1, and

a : b : c = 1− k2 : 2k : 1 + k2.

(b) Find two right triangles which are not similar, each satisfying c =
3
4a+

4
5b.

1

5. ABC is a triangle with a right angle at C. If the median on the side c
is the geometric mean of the sides a and b, show that one of the acute
angles is 15◦.

6. Let ABC be a right triangle with a right angle at vertex C. Let
CXPY be a square with P on the hypotenuse, and X , Y on the sides.
Show that the length t of a side of this square is given by

1

t
=
1

a
+
1

b
.

t

t

a

b
da b

1/a + 1/b = 1/t. 1/a 2̂ + 1/b 2̂ = 1/d 2̂.

1a : b : c = 12 : 35 : 37 or 12 : 5 : 13. More generally, for h ≤ k, there is, up to
similarity, a unique right triangle satisfying c = ha+ kb provided
(i) h < 1 ≤ k, or
(ii)

√
2

2 ≤ h = k < 1, or
(iii) h, k > 0, h2 + k2 = 1.
There are two such right triangles if

0 < h < k < 1, h2 + k2 > 1.
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7. Let ABC be a right triangle with sides a, b and hypotenuse c. If d is
the height of on the hypotenuse, show that

1

a2
+
1

b2
=
1

d2
.

8. (Construction of integer right triangles) It is known that every right
triangle of integer sides (without common divisor) can be obtained by
choosing two relatively prime positive integers m and n, one odd, one
even, and setting

a = m2 − n2, b = 2mn, c = m2 + n2.

(a) Verify that a2 + b2 = c2.

(b) Complete the following table to find all such right triangles with
sides < 100:

m n a = m2 − n2 b = 2mn c = m2 + n2

(i) 2 1 3 4 5
(ii) 3 2
(iii) 4 1
(iv) 4 3
(v) 5 2
(vi) 5 4
(vii) 6 1
(viii) 6 5
(ix) 7 2
(x) 7 4
(xi) 7 6
(xii) 8 1
(xiii) 8 3
(xiv) 8 5
(xv) 9 2
(xvi) 9 4 65 72 97
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1.2 Euclid’s Proof of Pythagoras Theorem

1.2.1 Euclid’s proof

CCCC

BBBB
AAAA

1.2.2 Application: construction of geometric mean

Construction 1

Given two segments of length a < b, mark three points P , A, B on a line
such that PA = a, PB = b, and A, B are on the same side of P . Describe
a semicircle with PB as diameter, and let the perpendicular through A
intersect the semicircle at Q. Then PQ2 = PA · PB, so that the length of
PQ is the geometric mean of a and b.

b

a

x

Q

A BP

Q

A BP

PA = a, PB = b;  PQ 2̂ = ab.
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Construction 2

Given two segments of length a, b, mark three points A, P , B on a line
(P between A and B) such that PA = a, PB = b. Describe a semicircle
with AB as diameter, and let the perpendicular through P intersect the
semicircle at Q. Then PQ2 = PA · PB, so that the length of PQ is the
geometric mean of a and b.

a

y xx

baba

Q

P BA

y 2̂ = a(a+b) = a 2̂ + ab,
y 2̂ = â 2 + x 2̂.
Theref ore,   ab = x 2̂.

Example

To cut a given rectangle of sides a < b into three pieces that can be re-
arranged into a square. 2

| |

= =

This construction is valid as long as a ≥ 1
4b.

2Phillips and Fisher, p.465.
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Exercise

1. The midpoint of a chord of length 2a is at a distance d from the
midpoint of the minor arc it cuts out from the circle. Show that the
diameter of the circle is a

2+d2

d .

d
a
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d

a

b

a

b

d

B

A
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2. Two parallel chords of a circle has lengths 168 and 72, and are at a
distance 64 apart. Find the radius of the circle. 3

3. A crescent is formed by intersecting two circular arcs of qual radius.
The distance between the two endpoints A and B is a. The central
line intersects the arcs at two points P and Q at a distance d apart.
Find the radius of the circles.

4. ABPQ is a rectangle constructed on the hypotenuse of a right trian-
gle ABC. X and Y are the intersections of AB with CP and CQ
respectively.

3Answer: The distance from the center to the longer chord is 13. From this, the radius
of the circle is 85. More generally, if these chords has lengths 2a and 2b, and the distance
between them is d, the radius r of the circle is given by

r2 =
[d2 + (a− b)2][d2 + (a+ b)2]

4d2
.
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(a) If ABPQ is a square, show that XY 2 = BX ·AY .
(b) If AB =

√
2 · AQ, show that AX2 +BY 2 = AB2.

1.3 Construction of regular polygons

1.3.1 Equilateral triangle, regular hexagon, and square

| |

==

| |

==

==

| |

==

Given a circle of radius a, we denote by

zn
Zn

the length of a side of
an inscribed

a circumscribed
regular n−gon.

z3 =
√
3a, Z3 = 2

√
3a; z4 =

√
2a, Z4 = 2a; z6 = 1, Z6 =

2

3

√
3a.
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Exercise

1. AB is a chord of length 2 in a circle O(2). C is the midpoint of the
minor arc AB and M the midpoint of the chord AB.

M

C

O

A B

Show that (i) CM = 2−√3; (ii) BC = √6−√2.
Deduce that

tan 15◦ = 2−
√
3, sin 15◦ =

1

4
(
√
6−
√
2), cos 15◦ =

1

4
(
√
6+
√
2).
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1.4 The regular pentagon and its construction

1.4.1 The regular pentagon
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Since XB = XC by symmetry, the isosceles triangles CAB and XCB are
similar. From this,

AC

AB
=
CX

CB
,

and AC · CB = AB · CX . It follows that

AX2 = AB ·XB.

1.4.2 Division of a segment into the golden ratio

Such a point X is said to divide the segment AB in the golden ratio, and
can be constructed as follows.

(1) Draw a right triangle ABP with BP perpendicular to AB and half
in length.

(2) Mark a point Q on the hypotenuse AP such that PQ = PB.
(3) Mark a point X on the segment AB such that AX = AQ.
Then X divides AB into the golden ratio, namely,

AX : AB = XB : AX.
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Exercise

1. If X divides AB into the golden ratio, then AX : XB = φ : 1, where

φ =
1

2
(
√
5 + 1) ≈ 1.618 · · · .

Show also that AXAB =
1
2(
√
5− 1) = φ− 1 = 1

φ .

2. If the legs and the altitude of a right triangle form the sides of another
right triangle, show that the altitude divides the hypotenuse into the
golden ratio.

3. ABC is an isosceles triangle with a point X on AB such that AX =
CX = BC. Show that

(i) 6 BAC = 36◦;
(ii) AX : XB = φ : 1.

Suppose XB = 1. Let E be the midpoint of the side AC. Show that

XE =
1

4

q
10 + 2

√
5.

Deduce that

cos 36◦ =
√
5 + 1

4
, sin 36◦ =

1

2

q
10− 2

√
5, tan 36◦ =

q
5− 2

√
5.

D

B

X

CA

X

B

E CA

4. ABC is an isosceles triangle with AB = AC = 4. X is a point on AB
such that AX = CX = BC. Let D be the midpoint of BC. Calculate
the length of AD, and deduce that

sin 18◦ =
√
5− 1
4

, cos 18◦ =
1

4

q
10 + 2

√
5, tan 18◦ =

1

5

q
25− 10

√
5.
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1.4.3 Construction of a regular pentagon

1. Divide a segment AB into the golden ratio at X .

2. Construct the circles A(X) and X(B) to intersect at C.

3. Construct a circle center C, radius AB, to meet the two circles A(X)
and B(AX) at D and E respectively.

Then, ACBED is a regular pentagon.

Exercise

1. Justify the following construction of an inscribed regular pentagon.

5

7
4

2

1

E

D

C

B

6

3

AO

1.5 The cosine formula and its applications

1.5.1 The cosine formula

c2 = a2 + b2 − 2ab cos γ.



YIU: Euclidean Geometry 13

Ñ

c

b

a

c
a

E C A

B

E AC

B

'

Exercise

1. Show that the (4,5,6) triangle has one angle equal to twice of another.

2. If γ = 2β, show that c2 = (a+ b)b.

3. Find a simple relation between the sum of the areas of the three squares
S1, S2, S3, and that of the squares T1, T2, T3.

T1

T3

T2

S3

S1
S2

4. ABC is a triangle with a = 12, b+ c = 18, and cosα = 7
38 . Show that

4

a3 = b3 + c3.

4AMM E688, P.A. Pizá. Here, b = 9−√5, and c = 9 +√5.
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1.5.2 Stewart’s Theorem

If X is a point on the side BC (or its extension) such that BX : XC = λ : µ,
then

AX2 =
λb2 + µc2

λ+ µ
− λµa2

(λ+ µ)2
.

Proof. Use the cosine formula to compute the cosines of the angles AXB
and AXC, and note that cosABC = − cosAXB.

C bbcbc

H CB

A

D CB

A

X CB

A

1.5.3 Apollonius Theorem

The length ma of the median AD is given by

m2
a =

1

4
(2b2 + 2c2 − a2).

Proof. Apply Stewart’s Theorem with λ = µ = 1.

Exercise

1. mb = mc if and only if b = c.

2. m2
a +m

2
b +m

2
c =

3
4(a

2 + b2 + c2).

3. The lengths of the sides of a triangle are 136, 170, and 174. Calculate
the lengths of its medians. 5

4. Suppose c2 = a2+b2

2 . Show that mc =
√

3
2 c. Give a euclidean construc-

tion of triangles satisfying this condition.

5Answers: 158, 131, 127.



YIU: Euclidean Geometry 15

5. If ma : mb : mc = a : b : c, show that the triangle is equilateral.

6. Suppose mb : mc = c : b. Show that either

(i) b = c, or

(ii) the quadrilateral AEGF is cyclic.

Show that the triangle is equilateral if both (i) and (ii) hold. 6

7. Show that the median ma can never be equal to the arithmetic mean
of b and c. 7

8. The median ma is the geometric mean of b and c if and only if a =√
2|b− c|.

1.5.4 Length of angle bisector

The length wa of the (internal) bisector of angle A is given by

w2
a = bc[1− (

a

b+ c
)2].

Proof. Apply Stewart’s Theorem with λ = c and µ = b.

Exercise

1. w2
a =

4bcs(s−a)
(b+c)2 .

2. The lengths of the sides of a triangle are 84, 125, 169. Calculate the
lengths of its internal bisectors. 8

3. (Steiner - Lehmus Theorem) If wa = wb, then a = b.
9

4. Suppose wa : wb = b : a. Show that the triangle is either isosceles, or
γ = 60◦. 10

6Crux 383. In fact, b2m2
b − c2m2

c =
1
4 (c− b)(c+ b)(b2 + c2 − 2a2).

7Complete the triangle ABC to a parallelogram ABA0C.
8Answers: 975

7
, 26208

253
, 12600

209
.

9Hint: Show that

a

(b+ c)2
− b

(c+ a)2
=
(a− b)[(a+ b+ c)2 − ab]

(b+ c)2(c+ a)2
.

10a2w2
a − b2w2

b =
abc(b−a)(a+b+c)2

(a+c)2(b+c)2 [a2 − ab+ b2 − c2].
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5. Show that the length of the external angle bisector is given by

w
02
a = bc[(

a

b− c)
2 − 1] = 4bc(s− b)(s− c)

(b− c)2 .

6. In triangle ABC, α = 12◦, and β = 36◦. Calculate the ratio of the
lengths of the external angle bisectors w0a and w0b.

11

1.6 Appendix: Synthetic proofs of Steiner - Lehmus
Theorem

1.6.1 First proof. 12

Suppose β < γ in triangle ABC. We show that the bisector BM is longer
than the bisector CN .

�LO
�LO

L
N

M

CB

A

Choose a point L on BM such that 6 NCL = 1
2β. Then B, N , L, C are

concyclic since 6 NBL = 6 NCL. Note that

6 NBC = β <
1

2
(β + γ) = 6 LCB,

and both are acute angles. Since smaller chords of a circle subtend smaller
acute angles, we have CN < BL. It follows that CN < BM .

11Answer: 1:1. The counterpart of the Steiner - Lehmus theorem does not hold. See
Crux Math. 2 (1976) pp. 22 — 24. D.L.MacKay (AMM E312): if the external angle
bisectors of B and C of a scalene triangle ABC are equal, then s−a

a
is the geometric mean

of s−b
b
and s−c

c
. See also Crux 1607 for examples of triangles with one internal bisector

equal to one external bisector.
12Gilbert - McDonnell, American Mathematical Monthly, vol. 70 (1963) 79 — 80.
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1.6.2 Second proof. 13

Suppose the bisectors BM and CN in triangle ABC are equal. We shall
show that β = γ. If not, assume β < γ. Compare the triangles CBM and
BCN . These have two pairs of equal sides with included angles 6 CBM =
1
2β <

1
2γ =

6 BCN , both of which are acute. Their opposite sides therefore
satisfy the relation CM < BN .

G

M

N

A

B C

Complete the parallelogram BMGN , and consider the triangle CNG.
This is isosceles since CN = BM = NG. Note that

6 CGN =
1

2
β + 6 CGM,

6 GCN =
1

2
γ + 6 GCM.

Since β < γ, we conclude that 6 CGM > 6 GCM . From this, CM > GM =
BN . This contradicts the relation CM < BN obtained above.

Exercise

1. The bisectors of angles B and C of triangle ABC intersect the median
AD at E and F respectively. Suppose BE = CF . Show that triangle
ABC is isosceles. 14

13M. Descube, 1880.
14Crux 1897; also CMJ 629.



Chapter 2

The circumcircle and
the incircle

2.1 The circumcircle

2.1.1 The circumcenter

The perpendicular bisectors of the three sides of a triangle are concurrent
at the circumcenter of the triangle. This is the center of the circumcircle,
the circle passing through the three vertices of the triangle.

~

~

R

a / 2

bc

O O

F E

D D

A

B C

A

B C

2.1.2 The sine formula

Let R denote the circumradius of a triangle ABC with sides a, b, c opposite
to the angles α, β, γ respectively.

18
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a

sinα
=

b

sinβ
=

c

sin γ
= 2R.

Exercise

1. The internal bisectors of angles B and C intersect the circumcircle of
4ABC at B0 and C 0.
(i) Show that if β = γ, then BB0 = CC 0.

(ii) If BB0 = CC 0, does it follow that β = γ? 1

B '

C '

CB

A

2. If H is the orthocenter of triangle ABC, then the triangles HAB,
HBC, HCA and ABC have the same circumradius.

3. Given three angles α, β, γ such that θ + φ + ψ = 60◦, and an equi-
lateral triangle XY Z, construct outwardly triangles AY Z and BZX

such that
6 AY Z = 60◦ + ψ, 6 AZY = 60◦ + φ
6 BZX = 60◦ + θ, 6 BXZ = 60◦ + ψ . Suppose the sides

of XY Z have unit length.

(a) Show that

AZ =
sin(60◦ + ψ)

sin θ
, and BZ =

sin(60◦ + ψ)
sinφ

.

(b) In triangle ABZ, show that 6 ZAB = θ and 6 ZBA = φ.

1(ii) No. BB0 = CC0 if and only if β = γ or α = 2π
3
.
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P

C

BA

Z

XY

C

BA

Z

XY

(c) Suppose a third triangle XY C is constructed outside XY Z such

that 6 CYX = 60◦+ θ and 6 CXY = 60◦+φ. Show that
AY,AZ
BX,BZ
CX,CY

are

the trisectors of the angles of triangle ABC.

(d) Show that AY ·BZ · CX = AZ ·BX · CY .
(e) Suppose the extensions of BX and AY intersect at P . Show that
the triangles PXZ and PY Z are congruent.

2.1.3 Johnson’s Theorem

Suppose three circles A(r), B(r), and C(r) have a common point P . If the

circles
(B)
(C)
(A)

and
(C)
(A)
(B)

intersect again at
X
Y
Z
, then the circle through X , Y ,

Z also has radius r.

X

Z

P
YX

Z

PYX

Z

P

Y

B

C

B

C

B

C

AAA
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Proof. (1) BPCX, APCY and APBZ are all rhombi. Thus, AY and
BX are parallel, each being parallel to PC. Since AY = BX, ABXY is a
parallelogram, and XY = AB.

(2) Similarly, Y Z = BC and ZX = CA. It follows that the triangles
XY Z and ABC are congruent.

(3) Since triangle ABC has circumradius r, the circumcenter being P ,
the circumradius of XY Z is also r.

Exercise

1. Show that AX, BY and CZ have a common midpoint.

2.2 The incircle

2.2.1 The incenter

The internal angle bisectors of a triangle are concurrent at the incenter of
the triangle. This is the center of the incircle, the circle tangent to the three
sides of the triangle.

If the incircle touches the sides BC, CA and AB respectively at X, Y ,
and Z,

AY = AZ = s− a, BX = BZ = s− b, CX = CY = s− c.

r
r

r

s -b s -b

s -c

s -cs -a

s -a

Z

Y

X

I

C

B

A

f

^

_

C

2.2.2

Denote by r the inradius of the triangle ABC.

r =
24

a+ b+ c
=
4
s
.



YIU: Euclidean Geometry 22

Exercise

1. Show that the three small circles are equal.

2. The incenter of a right triangle is equidistant from the midpoint of the
hypotenuse and the vertex of the right angle. Show that the triangle
contains a 30◦ angle.

I

3. Show that XY Z is an acute angle triangle.

4. Let P be a point on the side BC of triangle ABC with incenter I.
Mark the point Q on the side AB such that BQ = BP . Show that
IP = IQ.
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I
R '

Q '

P '

RQ

P CB

A

Continue to mark R on AC such that AR = AQ, P 0 on BC such that
CP 0 = CR, Q0 on AB such that BQ0 = BP 0, R0 on AC such that
AR0 = AQ0. Show that CP = CR0, and that the six points P , Q, R,
P 0, Q0, R0 lie on a circle, center I.

5. The inradius of a right triangle is r = s− c.
6. The incircle of triangle ABC touches the sides AC and AB at Y and Z
respectively. Suppose BY = CZ. Show that the triangle is isosceles.

7. A line parallel to hypotenuse AB of a right triangle ABC passes
through the incenter I. The segments included between I and the
sides AC and BC have lengths 3 and 4.

vu

r
43

ZA

C

B

I

8. Z is a point on a segment AB such that AZ = u and ZB = v. Suppose
the incircle of a right triangle with AB as hypotenuse touches AB at
Z. Show that the area of the triangle is equal to uv. Make use of this
to give a euclidean construction of the triangle. 2

2Solution. Let r be the inradius. Since r = s − c for a right triangle, a = r + u and
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9. AB is an arc of a circle O(r), with 6 AOB = α. Find the radius of the
circle tangent to the arc and the radii through A and B. 3

~

B

A

O

10. A semicircle with diameter BC is constructed outside an equilateral
triangle ABC. X and Y are points dividing the semicircle into three
equal parts. Show that the lines AX and AY divide the side BC into
three equal parts.

X

Y

CA

B

11. Suppose each side of equilateral triangle has length 2a. Calculate the
radius of the circle tangent to the semicircle and the sides AB and
AC. 4

12. AB is a diameter of a circle O(
√
5a). PXY Q is a square inscribed in

the semicircle. Let C a point on the semicircle such that BC = 2a.

b = r+ v. From (r+u)2 +(r+ v)2 = (u+ v)2, we obtain (r+u)(r+ v) = 2uv so that the
area is 1

2 (r + u)(r + v) = uv. If h is the height on the hypotenuse, then
1
2 (u+ v)h = uv.

This leads to a simple construction of the triangle.
3Hint: The circle is tangent to the arc at its midpoint.
4 1

3 (1 +
√
3)a.
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(a) Show that the right triangle ABC has the same area as the square
PXY Q.

(b) Find the inradius of the triangle ABC. 5

(c) Show that the incenter of 4ABC is the intersection of PX and
BY .

C

I

Y

Q P

X

BOA

13. A square of side a is partitioned into 4 congruent right triangles and
a small square, all with equal inradii r. Calculate r.

14. An equilateral triangle of side 2a is partitioned symmetrically into a
quadrilateral, an isosceles triangle, and two other congruent triangles.
If the inradii of the quadrilateral and the isosceles triangle are equal,

5r = (3−√5)a.
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find this radius. What is the inradius of each of the remaining two
triangles? 6

15. Let the incircle I(r) of a right triangle 4ABC (with hypotenuse AB)
touch its sides BC, CA, AB at X, Y , Z respectively. The bisectors
AI and BI intersect the circle Z(I) at the points M and N . Let CR
be the altitude on the hypotenuse AB.

Show that

(i) XN = YM = r;

(ii) M and N are the incenters of the right triangles ABR and BCR
respectively.

M
N

Z

X
Y

R

I

A B

C

16. CR is the altitude on the hypotenuse AB of a right triangle ABC.
Show that the area of the triangle determined by the incenters of

triangles ABC, ACR, and BCR is (s−c)3

c . 7

17. The triangle is isosceles and the three small circles have equal radii.
Suppose the large circle has radius R. Find the radius of the small
circles. 8

6(
√
3−√2)a.

7Make use of similarity of triangles.
8Let θ be the semi-vertical angle of the isosceles triangle. The inradius of the triangle

is 2R sin θ cos2 θ
1+sin θ = 2R sin θ(1− sin θ). If this is equal to R

2 (1− sin θ), then sin θ = 1
4 . From

this, the inradius is 3
8
R.
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18. The large circle has radius R. The four small circles have equal radii.
Find this common radius. 9

2.3 The excircles

2.3.1 The excenter

The internal bisector of each angle and the external bisectors of the remain-
ing two angles are concurrent at an excenter of the triangle. An excircle can
be constructed with this as center, tangent to the lines containing the three
sides of the triangle.

ra

ra

r a

Z'

Y'

X

IA

CA

B

9Let θ be the smaller acute angle of one of the right triangles. The inradius of the right
triangle is 2R cos θ sin θ

1+sin θ+cos θ
. If this is equal to R

2
(1− sin θ), then 5 sin θ− cos θ = 1. From this,

sin θ = 5
13 , and the inradius is

4
13R.
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2.3.2 The exradii

The exradii of a triangle with sides a, b, c are given by

ra =
4
s− a, rb =

4
s− b , rc =

4
s− c .

Proof. The areas of the triangles IABC, IACA, and IAAB are
1
2ara,

1
2bra,

and 1
2cra respectively. Since

4 = −4IABC +4IACA+4IAAB,
we have

4 =
1

2
ra(−a+ b+ c) = ra(s− a),

from which ra =
4
s−a .

Exercise

1. If the incenter is equidistant from the three excenters, show that the
triangle is equilateral.

2. Show that the circumradius of 4IAIBIC is 2R, and the area is abc2r .

3. Show that for triangle ABC, if any two of the points O, I, H are
concyclic with the vertices B and C, then the five points are concyclic.
In this case, α = 60◦.

4. Suppose α = 60◦. Show that IO = IH.

5. Suppose α = 60◦. If the bisectors of angles B and C meet their
opposite sides at E and F , then IE = IF .

6. Show that r
ra
= tan β2 tan

γ
2 .

P

A B

CC

A B
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7. Let P be a point on the side BC. Denote by
r0, ρ0
r00, ρ00 the inradius

and exradius of triangle
ABP
APC

. Show that r
0r00
ρ0ρ00 is independent of the

position of P .

8. LetM be the midpoint of the arcBC of the circumcircle not containing
the vertex A. Show that M is also the midpoint of the segment IIA.

M '

Y '
O

Z '

IB

IC

I

CB

A

IA

O

I

_

^ C

9. Let M 0 be the midpoint of the arc BAC of the circumcircle of triangle
ABC. Show that each of M 0BIC and M 0CIB is an isosceles triangle.

Deduce that M 0 is indeed the midpoint of the segment IBIC .

10. The circle BIC intersects the sides AC, AB at E and F respectively.
Show that EF is tangent to the incircle of 4ABC. 10

10Hint: Show that IF bisects angle AFE.
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E

F X

I

A

B C

11. The incircle of triangle ABC touches the side BC at X . The line AX
intersects the perpendicular bisector of BC at K. If D is the midpoint
of BC, show that DK = rC .

2.4 Heron’s formula for the area of a triangle

Consider a triangle ABC with area 4. Denote by r the inradius, and ra the
radius of the excircle on the side BC of triangle ABC. It is convenient to
introduce the semiperimeter s = 1

2(a+ b+ c).

s -b

s -c

ra

ra

s -b s -b

s -c

s -cs -a

s -a
r

rr

Y '

Z '

Y

X
Z

I'

I

B

A C

• 4 = rs.
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• From the similarity of triangles AIZ and AI 0Z 0,

r

ra
=
s− a
s
.

• From the similarity of triangles CIY and I 0CY 0,

r · ra = (s− b)(s− c).

• From these,

r =

s
(s− a)(s− b)(s− c)

s
,

4 =
q
s(s− a)(s− b)(s− c).

This latter is the famous Heron formula.

Exercise

1. The altitudes a triangle are 12, 15 and 20. What is the area of the
triangle ? 11

2. Find the inradius and the exradii of the (13,14,15) triangle.

3. The length of each side of the square is 6a, and the radius of each of
the top and bottom circles is a. Calculate the radii of the other two
circles.

114 = 150. The lengths of the sides are 25, 20 and 15.
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4. If one of the ex-radii of a triangle is equal to its semiperimeter, then
the triangle contains a right angle.

5. 1
ra
+ 1

rb
+ 1

rc
= 1

r .

6. rarbrc = r
2s.

7. Show that

(i) ra + rb + rc =
−s3+(ab+bc+ca)s

4 ;

(ii) (s− a)(s− b)(s− c) = −s3 + (ab+ bc+ ca)s.

Deduce that
ra + rb + rc = 4R+ r.

2.4.1 Appendix: A synthetic proof of ra + rb + rc = 4R + r

M '

M

O

Q

D
XZ ' Y 'X '

IB

IA

IC

I

CB

A
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Proof. (1) The midpoint M of the segment IIA is on the circumcircle.
(2) The midpoint M 0 of IBIC is also on the circumcircle.
(3) MM 0 is indeed a diameter of the circumcircle, so that MM 0 = 2R.
(4) If D is the midpoint of BC, then DM 0 = 1

2(rb + rc).
(5) Since D is the midpoint of XX 0, QX 0 = IX = r, and IAQ = ra − r.
(6) Since M is the midpoint of IIA, MD is parallel to IAQ and is half

in length. Thus, MD = 1
2(ra − r).

(7) It now follows from MM 0 = 2R that ra + rb + rc − r = 4R.



Chapter 3

The Euler line and
the nine-point circle

3.1 The orthocenter

3.1.1

The three altitudes of a triangle are concurrent. The intersection is the
orthocenter of the triangle.

H

B C

A
H

C '

A '

B '
A

B C

The orthocenter is a triangle is the circumcenter of the triangle bounded
by the lines through the vertices parallel to their opposite sides.

3.1.2

The orthocenter of a right triangle is the vertex of the right angle.

34
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If the triangle is obtuse, say, α > 90◦, then the orthocenter H is outside
the triangle. In this case, C is the orthocenter of the acute triangle ABH.

3.1.3 Orthocentric quadrangle

More generally, if A, B, C, D are four points one of which is the orthocenter
of the triangle formed by the other three, then each of these points is the
orthocenter of the triangle whose vertices are the remaining three points. In
this case, we call ABCD an orthocentric quadrangle.

3.1.4 Orthic triangle

The orthic triangle of ABC has as vertices the traces of the orthocenter
H on the sides. If ABC is an acute triangle, then the angles of the orthic
triangle are

180◦ − 2α, 180◦ − 2β, and 180◦ − 2γ.

Z

X

Y H

C
B

A

Z

X

Y

H

CB

A

If ABC is an obtuse triangle, with γ > 90◦, then ABH is acute, with
angles 90◦ − β, 90◦ − α, and 180◦ − γ. The triangles ABC and ABH have
the same orthic triangle, whose angles are then

2β, 2α, and 2γ − 180◦.

Exercise

1. If ABC is an acute triangle, then Y Z = a cosα. How should this be
modified if α > 90◦?

2. If an acute triangle is similar to its orthic triangle, then the triangle
must be equilateral.
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3. Let H be the orthocenter of an acute triangle. AH = 2R · cosα, and
HX = 2R · cosβ cos γ, where R is the circumradius.

4. If an obtuse triangle is similar to its orthic triangle, find the angles of
the triangle. 1

3.2 The Euler line

3.2.1 Theorem

The circumcenter O, the orthocenter H and the median point M of a non-
equilateral triangle are always collinear. Furthermore, OG : GH = 1 : 2.
Proof. Let Y be the projection of the orthocenter H on the side AC.

G '

Y

H

O

A

CB

The Euler line

1. AH = AY/ sin γ = c cosα/ sin γ = 2R cosα.

2. OD = R cosα.

3. If OH and AD intersect at G0, then 4AG0H ' 4DG0O, and AG0 =
2G0D.

4. Consequently, G0 = G, the centroid of 4ABC.

The line OGH is called the Euler line of the triangle.

1 180◦
7 , 360◦

7 , and 720◦
7 .
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Exercise

1. Show that a triangle is equilateral if and only if any two of the points
coincide.

circumcenter, incenter, centroid, orthocenter.

2. Show that the incenter I of a non-equilateral triangle lies on the Euler
line if and only if the triangle is isosceles.

3. Let O be the circumcenter of 4ABC. Denote by D, E, F the projec-
tions of O on the sides BC, CA, AB respectively. DEF is called the
medial triangle of ABC.

(a) Show that the orthocenter ofDEF is the circumcenterO of4ABC.
(b) Show that the centroid of DEF is the centroid of 4ABC.
(c) Show that the circumcenter N of DEF also lies on the Euler line
of 4ABC. Furthermore,

OG : GN : NH = 2 : 1 : 3.

4. Let H be the orthocenter of triangle ABC. Show that the Euler lines
of 4ABC, 4HBC, 4HCA and 4HAB are concurrent. 2

5. Show that the Euler line is parallel (respectively perpendicular) to the
internal bisector of angle C if and only if γ = 2π

3 (respectively π
3 ).

6. A diameter d of the circumcircle of an equilateral triangle ABC in-
tersects the sidesBC, CA and AB at D, E and F respectively. Show
that the Euler lines of the triangles AEF , BFD and CDE form an
equilateral triangle symmetrically congruent to ABC, the center of
symmetry lying on the diameter d. 3

2Hint: find a point common to them all.
3Thébault, AMM E547.
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E

F

D

O

CB

A

7. The Euler lines of triangles IBC, ICA, IAB are concurrent. 4

3.3 The nine-point circle

Let ABC be a given triangle, with
(i) D, E, F the midpoints of the sides BC, CA, AB,
(ii) P , Q, R the projections of the vertices A, B, C on their opposite

sides, the altitudes AP , BQ, CR concurring at the orthocenter H,
(iii) X , Y , Z the midpoints of the segments AH, BH, CH.
The nine points D, E, F , P , Q, R, X, Y , Z are concyclic.

This is called the nine-point circle of 4ABC. The center of this circle is
the nine-point center F . It is indeed the circumcircle of the medial triangle
DEF .

The center F of the nine-point circle lies on the Euler line, and is the
midway between the circumcenter O and the orthocenter H.

4Crux 1018. Schliffer-Veldkamp.
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N

R

Q

P

O

H

D

EF

CB

A

The nine-point circle of  a triangle

Exercise

1. P and Q are two points on a semicircle with diameter AB. AP and
BQ intersect at C, and the tangents at P and Q intersect at X. Show
that CX is perpendicular to AB.

C

X

P

Q

BA

2. Let P be a point on the circumcircle of triangle ABC, with orthocenter
H. The midpoint of PH lies on the nine-point circle of the triangle. 5

5



YIU: Euclidean Geometry 40

3. (a) Let ABC be an isosceles triangle with a = 2 and b = c = 9. Show
that there is a circle with center I tangent to each of the excircles of
triangle ABC.

(b) Suppose there is a circle with center I tangent externally to each
of the excircles. Show that the triangle is equilateral.

(c) Suppose there is a circle with center I tangent internally to each
of the excircles. Show that the triangle is equilateral.

4. Prove that the nine-point circle of a triangle trisects a median if and
only if the side lengths are proportional to its medians lengths in some
order.

3.4 Power of a point with respect to a circle

The power of a point P with respect to a circle O(r) is defined as

O(r)P := OP
2 − r2.

This number is positive, zero, or negative according as P is outside, on,
or inside the circle.

3.4.1

For any line ` through P intersecting a circle (O) at A and B, the signed
product PA ·PB is equal to (O)P , the power of P with respect to the circle
(O).

T

P

O

M PBA

O

M PA B

O

If P is outside the circle, (O)P is the square of the tangent from P to
(O).
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3.4.2 Theorem on intersecting chords

If two lines containing two chords AB and CD of a circle (O) intersect at
P , the signed products PA · PB and PC · PD are equal.

P

C

D

B

A

P

A

B

C

D

Proof. Each of these products is equal to the power (O)P = OP
2 − r2.

Exercise

1. If two circles intersect, the common chord, when extended, bisects the
common tangents.

2. E and F are the midpoints of two opposite sides of a square ABCD.
P is a point on CE, and FQ is parallel to AE. Show that PQ is
tangent to the incircle of the square.
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P

Q

EF

CD

BA

3. (The butterfly theorem) Let M be the midpoint of a chord AB of a
circle (O). PY and QX are two chords through M . PX and QY
intersect the chord AB at H and K respectively.

(i) Use the sine formula to show that

HX ·HP
HM2

=
KY ·KQ
KM2

.

(ii) Use the intersecting chords theorem to deduce that HM = KM .

a-yyxa-x
KH

X

Y

M B

QP

A

O

4. P and Q are two points on the diameter AB of a semicircle. K(T ) is
the circle tangent to the semicircle and the perpendiculars to AB at P
and Q. Show that the distance from K to AB is the geometric mean
of the lengths of AP and BQ.
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T

K

X
Y

QP BA O

3.5 Distance between O and I

3.5.1 Theorem

The distance d between the circumcenter O and the incenter I of 4ABC is
given by

R2 − d2 = 2Rr.

r

X

OI

C
B

A

Proof. Join AI to cut the circumcircle at X . Note that X is the midpoint
of the arc BC. Furthermore,

1. IX = XB = XC = 2R sin α2 ,

2. IA = r/ sin α2 , and

3. R2−d2 = power of I with respect to the circumcircle = IA·IX = 2Rr.

3.5.2 Corollary

r = 4R sin α2 sin
β
2 sin

γ
2 .
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Proof. Note that triangle XIC is isosceles with 6 IXC = β. This means
IC = 2XC · sin β2 = 4R sin α2 sin β2 . It follows that

r = IC · sin γ
2
= 4R sin

α

2
sin

β

2
sin
γ

2
.

3.5.3 Distance between O and excenters

OI2
A = R

2 + 2Rra.

Exercise

1. Given the circumcenter, the incenter, and a vertex of a triangle, to
construct the triangle.

2. Given a circle O(R) and r < 1
2R, construct a point I inside O(R) so

that O(R) and I(r) are the circumcircle and incircle of a triangle?

3. Given a point I inside a circle O(R), construct a circle I(r) so that
O(R) and I(r) are the circumcircle and incircle of a triangle?

4. Given a circle I(r) and a point O, construct a circle O(R) so that
O(R) and I(r) are the circumcircle and incircle of a triangle?

5. Show that the line joining the circumcenter and the incenter is parallel
to a side of the triangle if and only if one of the following condition
holds.

(a) One of the angles has cosine r
R ;

(b) s2 = (2R−r)2(R+r)
R−r .

6. The power of I with respect to the circumcircle is abc
a+b+c .

6

7. AIO ≤ 90◦ if and only if 2a ≤ b+ c.
8. Make use of the relation

a = r(cot
β

2
+ cot

γ

2
)

to give an alternative proof of the formula r = 4R sin α2 sin
β
2 sin

γ
2 .

9. Show that XIA = XI.

6Johnson, §298(i). This power is OI2 −R2 = 2Rr = abc
24 · 4

s
= abc

2s
.
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Circles

4.1 Tests for concyclic points

4.1.1

Let A, B, C, D be four points such that the lines AB and CD intersect
(extended if necessary) at P . If AP ·BP = CP ·DP , then the points A, B,
C, D are concyclic.

P

C

BAPA

D

C

BPA

D

C

B

4.1.2

Let P be a point on the line containing the side AB of triangle ABC such
that AP ·BP = CP 2. Then the line CP touches the circumcircle of triangle
ABC at the point C.

Exercise

1. Let ABC be a triangle satisfying γ = 90◦ + 1
2β. If Z is the point on

the side AB such that BZ = BC = a, then the circumcircle of triangle

45
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BCZ touches the side AC at C.

= == =

b

a

D

A

M CB

Z A

CB

E

D

A

CB

2. Let ABC be a triangle satisfying γ = 90◦ + 1
2β. Suppose that M is

the midpoint of BC, and that the circle with center A and radius AM
meets BC again at D. Prove that MD = AB.

3. Suppose that ABC is a triangle satisfying γ = 90◦ + 1
2β, that the

exterior bisector of angle A intersects BC at D, and that the side AB
touches the incircle of triangle ABC at F . Prove that CD = 2AF .

4.2 Tangents to circles

The centers of the two circles A(a) and A(b) are at a distance d apart.
Suppose d > a + b so that the two circles do not intersect. The internal
common tangent PQ has lengthq

d2 − (a+ b)2.



YIU: Euclidean Geometry 47

Q

X

P

A B

Y

A B

Suppose d > |a − b| so that none of the circle contains the other. The
external common tangent XY has lengthq

d2 − (a− b)2.

Exercise

1. In each of the following cases, find the ratio AB : BC. 1

A

D

B

CC

BA

D

2. Two circles A(a) and B(b) are tangent externally at a point P . The
common tangent at P intersects the two external common tangents
XY , X 0Y 0 at K, K 0 respectively.

(a) Show that 6 AKB is a right angle.

(b) What is the length PK?

(c) Find the lengths of the common tangents XY and KK0.

1
√
3 :
√
3 + 2 in the case of 4 circles.
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Y

X

Y'

X'

K

K'

BA P

3. A(a) and B(b) are two circles with their centers at a distance d apart.
AP and AQ are the tangents from A to circle B(b). These tangents
intersect the circle A(a) at H and K. Calculate the length of HK in
terms of d, a, and b. 2

K '

H '

K

H

BA

h

e

Q

P

BA

4. Tangents are drawn from the center of two given circles to the other
circles. Show that the chords HK and H 0K 0 intercepted by the tan-
gents are equal.

5. A(a) and B(b) are two circles with their centers at a distance d apart.
From the extremity A0 of the diameter of A(a) on the line AB, tangents
are constructed to the circle B(b). Calculate the radius of the circle
tangent internally to A(a) and to these tangent lines. 3

2Answer: 2ab
d
.

3Answer: 2ab
d+a+b

.
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a
è

b

d

BA
A ' BA

6. Show that the two incircles have equal radii.

7. ABCD is a square of unit side. P is a point on BC so that the incircle
of triangle ABP and the circle tangent to the lines AP , PC and CD
have equal radii. Show that the length of BP satisfies the equation

2x3 − 2x2 + 2x− 1 = 0.

x

y

Q

CD

BA

P

CD

BA

8. ABCD is a square of unit side. Q is a point on BC so that the incircle
of triangle ABQ and the circle tangent to AQ, QC, CD touch each
other at a point on AQ. Show that the radii x and y of the circles
satisfy the equations

y =
x(3− 6x+ 2x2)

1− 2x2
,

√
x+

√
y = 1.

Deduce that x is the root of

4x3 − 12x2 + 8x− 1 = 0.
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4.3 Tangent circles

4.3.1 A basic formula

Let AB be a chord of a circle O(R) at a distance h from the center O, and

P a point on AB. The radii of the circles
K(r)
K 0(r0) tangent to AB at P and

also to the
minor
major

arc AB are

r =
AP · PB
2(R+ h)

and r0 =
AP · PB
2(R− h)

respectively.

r '
h + r

r

h

r

R -r

x

h

H

QC

MA B

K

P

K '

K

A B
A B

PPM

OO

Proof. Let M be the midpoint of AB and MP = x. Let K(r) be the circle
tangent to AB at P and to the minor arc AB. We have

(R− r)2 = x2 + (h+ r)2,

from which

r =
R2 − x2 − h2

2(R+ h)
=
R2 −OP 2

2(R+ h)
=
AP · PB
2(R+ h)

.

The case for the major arc is similar.

4.3.2 Construction

Let C be the midpoint of arc AB. Mark a point Q on the circle so that
PQ = CM . Extend QP to meet the circle again at H. Then r = 1

2PH,
from this the center K can be located easily.
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Remarks

(1) If the chord AB is a diameter, these two circles both have radius

AP · PB
2R

.

(2) Note that the ratio r : r0 = R − h : R + h is independent of the
position of P on the chord AB.

4.3.3

Let θ be the angle between an external common tangent of the circles K(r),
K 0(r0) and the center line KK 0. Clearly,

sin θ =
r0 − r
r0 + r

=
1− r

r0

1 + r
r0
=
1− R−h

R+h

1 + R−h
R+h

=
h

R
.

This is the same angle between the radius OA and the chord AB. Since the
center line KK 0 is perpendicular to the chord AB, the common tangent is
perpendicular to the radius OA. This means that A is the midpoint of the
minor arc cut out by an external common tangent of the circles (K) and
(K0).

r '

r

h

é

é

D

Q

KQ
T

C

A

KP

BP
O

K '

K

A BP

O

4.3.4

Let P and Q be points on a chord AB such that the circles (KP ) and (KQ),

each being tangent to the chord and the
minor
major

arc AB, are also tangent to



YIU: Euclidean Geometry 52

each other externally. Then the internal common tangent of the two circles

passes through the midpoint of the
major
minor

arc AB.

Proof. Let T be the point of contact, and CD the chord of (O) which is the
internal common tangent of the circles K(P ) and K(Q). Regarding these
two circles are tangent to the chord CD, and AB as an external common
tangent, we conclude that C is the midpoint of the arc AB.

4.3.5

This leads to a simple construction of the two neighbors of (KP ), each
tangent to (KP ), to the chord AB, and to the arc AB containing KP .

Given a circle (KP ) tangent to (O) and a chord AB, let C be the mid-
point of the arc not containing KP .

(1) Construct the tangents from CT and CT 0 to the circle (KP ).

(2) Construct the bisector of the angle between
CT
CT 0 and AB to intersect

the ray
KPT
KPT

0 at
KQ
KQ0

.

Then, KQ and KQ0 are the centers of the two neighbors of (KP ). AB,
and to the arc AB containing KP .

KQ'

KQ

T
T '

C

A B

KP

P
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Exercise

1. Let C be the midpoint of the major arc AB. If two neighbor circles
(KP ) and (KQ) are congruent, then they touch each other at a point
T on the diameter CM such that CT = CA.

PQ

T

C

A B
M

O

2. The curvilinear triangle is bounded by two circular arcs A(B) and
B(A), and a common radius AB. CD is parallel to AB, and is at a
distance b. Denote the length of AB by a. Calculate the radius of the
inscribed circle.

r

h b

a

QP

C

A B

3. If each side of the square has length a, calculate the radii of the two
small circles.

4. Given a chord AB of a circle (O) which is not a diameter, locate the
points P on AB such that the radius of (K 0

P ) is equal to
1
2(R− h). 4

4Answer: x = ±
p
2h(R− h).
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5. A(B) and B(A) are two circles each with center on the circumference
of the other. Find the radius of the circle tangent to one of the circles
internally, the other externally, and the line AB. 5

K

A B

A BP
M

O

6. A(a) and B(b) are two semicircles tangent internally to each other at
O. A circle K(r) is constructed tangent externally to A(a), internally
to B(b), and to the line AB at a point X. Show that

BX =
b(3a− b)
a+ b

, and r =
4ab(b− a)
(a+ b)2

.

r

a
r
b - r

x

K

XBAO

4.3.6

Here is an alternative for the construction of the neighbors of a circle (KP )
tangent to a chord AB at P , and to the circle (O). Let M be the midpoint
of the chord AB, at a distance h from the center O. At the point P on AB
with MP = x, the circle KP (rP ) tangent to AB at P and to the minor arc
AB has radius

rP =
R2 − h2 − x2

2(R+ h)
.

5
√

3
4
r, r = radius of A(B).
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To construct the two circles tangent to the minor arc, the chord AB,
and the circle (KP ), we proceed as follows.

(1) Let C be the midpoint of the major arc AB. Complete the rectangle
BMCD, and mark on the line AB points A0, B0 such that A0M = MB0 =
MD.

(2) Let the perpendicular to AB through P intersect the circle (O) at
P1 and P2.

(3) Let the circle passing through P1, P2, and
A0

B0 intersect the chord

AB at
Q
Q0 .

BA QQ '
A ' B '

P1

P2 D

PM

C

O

Then the circles tangent to the minor arc and to the chord AB at Q and
Q0 are also tangent to the circle (KP ).
Proof. Let (KP ) and (KQ) be two circles each tangent to the minor arc
and the chord AB, and are tangent to each other externally. If their points
of contact have coordinates x and y on AB (with midpoint M as origin),
then

(x− y)2 = 4rP rQ = (R2 − h2 − x2)(R2 − h2 − y2)

(R+ h)2
.

Solving this equation for y in terms of x, we have

y − x = R2 − h2 − x2

√
2R2 + 2Rh± x.
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Now, R2−h2−x2 = AM2−MP 2 = AP ·PB = P1P ·PP2, and 2R
2+2Rh =

(R + h)2 + (R2 − h2) = MC2 + MB2 = MD2. This justifies the above
construction.

4.4 Mixtilinear incircles

L.Bankoff 6 has coined the term mixtilinear incircle of a triangle for a circle
tangent to two sides and the circumcircle internally. Let K(ρ) be the circle
tangent to the sides AB, AC, and the circumcircle at X3, X2, and A

0 respec-
tively. If E is the midpoint of AC, then Then KX2 = ρ and OE = R cosβ.
Also, AX2 = ρ cot

α
2 , and AE =

1
2b = R sinβ.

O
E

A '

X3

K

X2

B C

A

X2

K

X3

I

C

A

O

B

Since OK = R− ρ, it follows that

(R− ρ)2 = (ρ−R cosβ)2 + (ρ cot α
2
−R sinβ)2.

Solving this equation, we obtain

ρ = 2R tan2 α

2

·
cot

α

2
sinβ − 1 + cosβ

¸
.

By writing sinβ = 2 sin β2 cos
β
2 , and 1− cosβ = 2 sin2 β

2 , we have

ρ = 4R tan2 α

2
sin
β

2

·
cos α2 cos

β
2

sin α2
− sin β

2

¸
6A mixtilinear adventure, Crux Math. 9 (1983) pp.2 — 7.
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= 4R
sin α2 sin

β
2

cos2 α2

·
cos

α

2
cos

β

2
− sin α

2
sin
β

2

¸

= 4R
sin α2 sin

β
2

cos2 α2
cos

α+ β

2

= 4R
sin α2 sin

β
2 sin

γ
2

cos2 α2

=
r

cos2 α2
.

We summarize this with a slight change of notation.

4.4.1

The radius of the mixtilinear incircle in the angle A is given by

ρ1 = r · sec2 α
2
.

This formula enables one to locate the mixtilinear incenterK1 very easily.
Note that the segment X2X3 contains the incenter I as its midpoint, and
the mixtilinear incenter K1 is the intersection of the perpendiculars to AB
and AC at X3 and X2 respectively.

Exercise

1. In each of the following cases, the largest circle is the circumcircle of
the triangle (respectively equilateral and right). The smallest circle is
the incircle of the triangle, and the other circle touches two sides of
the triangle and the circumcircle. Compute the ratio of the radii of
the two smaller circles.
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2. ABC is a right triangle for which the mixtilinear incircle (K) of the
right angle touches the circumcircle at a point P such that KP is
parallel to a leg of the triangle. Find the ratio of the sides of the
triangle. 7

P

K

B

AC

3. ABC is an isosceles triangle with AB = AC = 2 and BC = 3. Show
that the ρ1 = 2ρ2.

4. ABC is an isosceles triangle with AB = AC. If ρ1 = kρ2, show that
k < 2, and the sides are in the ratio 1 : 1 : 2− k. 8

5. The large circle has radius R. The three small circles have equal radii.
Find this common radius. 9

4.4.2

Consider also the mixtilinear incircles in the angles B and C. Suppose the
mixtilinear incircle in angle B touch the sides BC and AB at the points Y1

73:4:5.

8If ρ2 = kρ1, then tan
β
2
=
q

k
4−k , so that cosβ =

1− k
4−k

1+ k
4−k

= 2−k
2
.

9Answer: 3−√5
2 R.
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and Y3 respectively, and that in angle C touch the sides BC and AC at Z1

and Z2 respectively.

Y 1

Z2

I

C'

Z2 B'

Y 3

X2

Z1 Y 1

Y 3

X3

Z1

I

A

CB

A

B C

Each of the segments X2X3, Y3Y1, and Z1Z2 has the incenter I as mid-
point. It follows that the triangles IY1Z1 and IY3Z2 are congruent, and
the segment Y3Z2 is parallel to the side BC containing the segment Y1Z1,
and is tangent to the incircle. Therefore, the triangles AY3Z2 and ABC are
similar, the ratio of similarity being

Y3Z2

a
=
ha − 2r
ha

,

with ha =
24
a = 2rs

a , the altitude of triangle ABC on the side BC. Sim-

plifying this, we obtain Y3Z2
a = s−a

s . From this, the inradius of the triangle
AY3Z2 is given by ra =

s−a
s · r. Similarly, the inradii of the triangles BZ1X3

and CX2BY1 are rb =
s−b
s · r and rc = s−c

s · r respectively. From this, we
have

ra + rb + rc = r.

We summarize this in the following proposition.

Proposition

If tangents to the incircles of a triangle are drawn parallel to the sides,
cutting out three triangles each similar to the given one, the sum of the
inradii of the three triangles is equal to the inradius of the given triangle.
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4.5 Mixtilinear excircles

The mixtilinear excircles are analogously defined. The mixtilinear exradius
in the angle A is given by

ρA = ra sec
2 α

2
,

where ra =
4
s−a is the corresponding exradius.

Y

ZBA

C



Chapter 5

The shoemaker’s knife

5.1 The shoemaker’s knife

Let P be a point on a segment AB. The region bounded by the three
semicircles (on the same side of AB) with diameters AB, AP and PB is
called a shoemaker’s knife. Suppose the smaller semicircles have radii a and
b respectively. Let Q be the intersection of the largest semicircle with the
perpendicular through P to AB. This perpendicular is an internal common
tangent of the smaller semicircles.

a bb a-b

H

K

U

V

Q

O2O1 O2O1PO POA B A B

Exercise

1. Show that the area of the shoemaker’s knife is πab.

2. Let UV be the external common tangent of the smaller semicircles.
Show that UPQV is a rectangle.

3. Show that the circle through U , P , Q, V has the same area as the
shoemaker’s knife.

61
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5.1.1 Archimedes’ Theorem

The two circles each tangent to CP , the largest semicircle AB and one of
the smaller semicircles have equal radii t, given by

t =
ab

a+ b
.

t
t

t

t

a a + b

Q

O1 POA B

Proof. Consider the circle tangent to the semicircles O(a+ b), O1(a), and
the line PQ. Denote by t the radius of this circle. Calculating in two ways
the height of the center of this circle above the line AB, we have

(a+ b− t)2 − (a− b− t)2 = (a+ t)2 − (a− t)2.

From this,

t =
ab

a+ b
.

The symmetry of this expression in a and b means that the circle tangent to
O(a+ b), O2(b), and PQ has the same radius t. This proves the theorem.

5.1.2 Construction of the Archimedean circles

Let Q1 and Q2 be points on the semicircles O1(a) and O2(b) respectively
such that O1Q1 and O2Q2 are perpendicular to AB. The lines O1Q2 and
O2Q1 intersect at a point C3 on PQ, and

C3P =
ab

a+ b
.

Note that C3P = t, the radius of the Archimedean circles. Let M1 and M2

be points on AB such that PM1 = PM2 = C3P . The center C1 of the
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Archimedean circle C1(t) is the intersection of the circle O1(M2) and the
perpendicular through M1 to AB. Likewise, C2 is the intersection of the
circle O2(M1) and the perpendicular through M2 to AB.

C1

C2

M1 M2

C3

Q2

Q1

Q

O1 O2PO BA

5.1.3 Incircle of the shoemaker’s knife

The circle tangent to each of the three semicircles has radius given by

ρ =
ab(a+ b)

a2 + ab+ b2
.

Proof. Let 6 COO2 = θ. By the cosine formula, we have

(a+ ρ)2 = (a+ b− ρ)2 + b2 + 2b(a+ b− ρ) cos θ,
(b+ ρ)2 = (a+ b− ρ)2 + a2 − 2a(a+ b− ρ) cos θ.

Eliminating ρ, we have

a(a+ ρ)2 + b(b+ ρ)2 = (a+ b)(a+ b− ρ)2 + ab2 + ba2.

The coefficients of ρ2 on both sides are clearly the same. This is a linear
equation in ρ:

a3 + b3 + 2(a2 + b2)ρ = (a+ b)3 + ab(a+ b)− 2(a+ b)2ρ,
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from which

4(a2 + ab+ b2)ρ = (a+ b)3 + ab(a+ b)− (a3 + b3) = 4ab(a+ b),

and ρ is as above.

ab

è

è

è

a

b
a + b -

X

Y

C

O2O1 POA B

è

5.1.4 Bankoff ’s Theorem

If the incircle C(ρ) of the shoemaker’s knife touches the smaller semicircles
at X and Y , then the circle through the points P , X, Y has the same radius
as the Archimedean circles.
Proof. The circle through P , X, Y is clearly the incircle of the triangle
CO1O2, since

CX = CY = ρ, O1X = O1P = a, O2Y = O2P = b.

The semiperimeter of the triangle CO1O2 is

a+ b+ ρ = (a+ b) +
ab(a+ b)

a2 + ab+ b2
=

(a+ b)3

a2 + ab+ b2
.

The inradius of the triangle is given bys
abρ

a+ b+ ρ
=

s
ab · ab(a+ b)
(a+ b)3

=
ab

a+ b
.

This is the same as t, the radius of the Archimedean circles.
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5.1.5 Construction of incircle of shoemaker’s knife

Locate the point C3 as in §??. Construct circle C3(P ) to intersect O1(a)
and O2(b) at X and Y respectively. Let the lines O1X and O2Y intersect
at C. Then C(X) is the incircle of the shoemaker’s knife.

C

X

Y
C3

O1 O2PO BA

Note that C3(P ) is the Bankoff circle, which has the same radius as the
Archimedean circles.

Exercise

1. Show that the area of triangle CO1O2 is

ab(a+ b)2

a2 + ab+ b2
.

2. Show that the center C of the incircle of the shoemaker’s knife is at a
distance 2ρ from the line AB.

3. Show that the area of the shoemaker’s knife to that of the heart
(bounded by semicircles O1(a), O2(b) and the lower semicircleO(a+b))
is as ρ to a+ b.
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è

a b

Y
X

Z
Q1

Q2

P BA

C

Y
X

O2O1 POA B

4. Show that the points of contact of the incircle C(ρ) with the semicircles
can be located as follows: Y , Z are the intersections with Q1(A), and
X, Z are the intersections with Q2(B).

5. Show that PZ bisects angle AZB.

5.2 Archimedean circles in the shoemaker’s knife

Let t = ab
a+b as before.

5.2.1

Let UV be the external common tangent of the semicircles O1(a) and O2(b),
which extends to a chord HK of the semicircle O(a+ b).

Let C4 be the intersection of O1V and O2U . Since

O1U = a, O2V = b, and O1P : PO2 = a : b,

C4P = ab
a+b = t. This means that the circle C4(t) passes through P and

touches the common tangent HK of the semicircles at N .
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t

t

a

b

bb a -b

C5

N

M

H

KC4

U

V

Q

O1 KPO BA

Let M be the midpoint of the chord HK. Since O and P are symmetric
(isotomic conjugates) with respect to O1O2,

OM + PN = O1U +O2V = a+ b.

it follows that (a + b) − QM = PN = 2t. From this, the circle tangent to
HK and the minor arc HK of O(a+ b) has radius t. This circle touches the
minor arc at the point Q.

5.2.2

Let OI 0, O1Q1, and O2Q2 be radii of the respective semicircles perpendicular
to AB. Let the perpendiculars to AB through O and P intersect Q1Q2 at
I and J respectively. Then PJ = 2t, and since O and P are isotomic
conjugates with respect to O1O2,

OI = (a+ b)− 2t.

It follows that II 0 = 2t. Note that OQ1 = OQ2. Since I and J are isotomic
conjugates with respect to Q1Q2, we have JJ

0 = II 0 = 2t.
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b

b

a

b

C7

C6 J '

I

J

I '

Q2

Q1

O1 O2PO BA

It follows that each of the circles through I and J tangent to the minor
arc of O(a+ b) has the same radius t. 1

5.2.3

The circles
C1(t)
C2(t)

and
M2(t)
M1(t)

have two internal common tangents, one of

which is the line PQ. The second internal common tangent passes through

the point
B
A
. 2

M1 M2O2O1 PCA BM1 M2

C1
C2

O2O1
OA B

1These circles are discovered by Thomas Schoch of Essen, Germany.
2Dodge, in In Eves’ Circle.
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5.2.4

The external common tangent of P (t) and
O1(a)
O2(b)

passes through
O2

O1
.

5.3 The Schoch line

5.3.1

The incircle of the curvilinear triangle bounded by the semicircle O(a + b)
and the circles A(2a) and B(2b) has radius t = ab

a+b .
Proof. Denote this circle by S(x). Note that SO is a median of the triangle
SO1O2. By Apollonius theorem,

(2a+ x)2 + (2b+ x)2 = 2[(a+ b)2 + (a+ b− x)2].

From this,

x =
ab

a+ b
= t.

x

2 a 2 b

x

a + b -x
ba a -b 2 b

S

O2O1 POA B

S

O2O1 POA B

5.3.2 Theorem (Schoch)

If a circle of radius t = ab
a+b is tangent externally to each of the semicircles

O1(a) and O2(b), its center lies on the perpendicular to AB through S.

5.3.3 Theorem (Woo)

For k > 0, consider the circular arcs through P , centers on the line AB
(and on opposite sides of P ), radii kr1, kr2 respectively. If a circle of radius
t = ab

a+b is tangent externally to both of them, then its center lies on the
Schoch line, the perpendicular to AB through S.
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Proof. Let Ak(ka) and Bk(ka) be two circles tangent externally at P , and
Sk(t) the circle tangent externally to each of these. The distance from the
center Sk to the “vertical” line through P is, by the cosine formula

(ka+ t) cos 6 SkAkP − 2a

=
(ka+ t)2 + k2(a+ b)2 − (kb+ t)2

2k(a+ b)
− ka

=
2k(a− b)t+ k2(a2 − b2) + k2(a+ b)2 − 2k2a(a+ b)

2k(a+ b)

=
a− b
a+ b

t.

Remark

For k = 2, this is the circle in the preceding proposition. It happens to be
tangent to O(a+ b) as well, internally.

5.3.4 Proposition

The circle Sk(t) tangent externally to the semicircle O(a + b) touches the
latter at Q.

K

W

Q

O2O1 O P BA

Proof. If the ray OQ is extended to meet the Schoch line at a point W ,
then

QW

OQ
=
PK

OP
,
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and

QW =
OQ

OP
· PK =

a+ b

a− b ·
a− b
a+ b

t = t.

Exercise

1. The height of the center Sk above AB is

2ab

(a+ b)2

q
k(a+ b)2 + ab.

2. Find the value of k for the circle in Proposition ??. 3

5.3.5

Consider the semicircle M(a+b
2 ) with O1O2 as a diameter. Let

S0

S00 be the

intersection of Schoch line with the semicircle
O(a+ b),
(M)

, and T the inter-

section of (M) with the radius OS0.

T

S'

S''

S

MO1
O2POA

B

Exercise

1. Show that PT is perpendicular to AB.

2. Show that S00 is
p
(a+ x)(b− x) above AB, and PS00 = 2t.

3Answer: k = a2+4ab+b2

ab
.
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3. S00 is the point Sk for k = 3
4 .

4. S0 is
p
(2a+ x)(2b− x) above AB, and

MS0 =
a2 + 6ab+ b2

2(a+ b)
.

From this, deduce that TS0 = 2t.

5. S0 is the point Sk for k = 2a2+11ab+2b2

4ab .

6. PTS0S00 is a parallelogram.



Chapter 6

The Use of Complex
Numbers

6.1 Review on complex numbers

A complex number z = x+ yi has a real part x and an imaginary part
y. The conjugate of z is the complex number z = x− yi. The norm is the
nonnegative number |z| given by |z|2 = x2 + y2. Note that

|z|2 = zz = zz.

z is called a unit complex number if |z| = 1. Note that |z| = 1 if and only
if z = 1

z .
Identifying the complex number z = x + yi with the point (x, y) in the

plane, we note that |z1 − z2| measures the distance between z1 and z2. In
particular, |z| is the distance between |z| and the origin 0. Note also that z
is the mirror image of z in the horizontal axis.

6.1.1 Multiplicative property of norm

For any complex numbers z1 and z2, |z1z2| = |z1||z2|.

6.1.2 Polar form

Each complex number z can be expressed in the form z = |z|(cos θ+ i sin θ),
where θ is unique up to a multiple of 2π, and is called the argument of z.

73
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6.1.3 De Moivre Theorem

(cos θ1 + i sin θ1)(cos θ2 + i sin θ2) = cos(θ1 + θ2) + i sin(θ1 + θ2).

In particular,
(cos θ + i sin θ)n = cosnθ + i sinnθ.

6.2 Coordinatization

Given 4ABC, we set up a coordinate system such that the circumcenter
O corresponds to the complex number 0, and the vertices A, B, C corre-
spond to unit complex numbers z1, z2, z3 respectively. In this way, the
circumradius R is equal to 1.

Z

Y

X

CB

A

H
GF0

z3z2

z1

Exercise

1. The centroid G has coordinates 1
3(z1 + z2 + z3).

2. The orthocenter H has coordinates z1 + z2 + z3.

3. The nine-point center F has coordinates 1
2(z1 + z2 + z3).

4. Let X, Y, Z be the midpoints of the minor arcs BC, CA, AB of the
circumcircle of 4ABC respectively. Prove that AX is perpendicular
to Y Z. [Hint: Consider the tangents at Y and Z. Show that these are
parallel to AC and AB respectively.] Deduce that the orthocenter of
4XY Z is the incenter I of 4ABC.
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6.2.1 The incenter

Now, we try to identify the coordinate of the incenter I. This, according to
the preceding exercise, is the orthocenter of 4XY Z.

It is possible to choose unit complex numbers t1, t2, t3 such that

z1 = t
2
1, z2 = t

2
2, z3 = t

2
3,

and X, Y, Z are respectively the points −t2t3, −t3t1 and −t1t2. From
these, the incenter I, being the orthocenter of 4XY Z, is the point −(t2t3+
t3t1 + t1t2) = −t1t2t3(t1 + t2 + t3).

Exercise

1. Show that the excenters are the points

IA = t1t2t3(−t1 + t2 + t3),
IB = t1t2t3(t1 − t2 + t3),
IC = t1t2t3(t1 + t2 − t3).

6.3 The Feuerbach Theorem

The nine-point circle of a triangle is tangent internally to the incircle, and
externally to each of the excircles.
Proof. Note that the distance between the incenter I and the nine-point
center F is

IF = |1
2
(t21 + t

2
2 + t

2
3) + (t1t2 + t2t3 + t3t1)|

= |1
2
(t1 + t2 + t3)

2|
=

1

2
|t1 + t2 + t3|2.

Since the circumradius R = 1, the radius of the nine-point circle is 1
2 .

We apply Theorem 3.5.1 to calculate the inradius r:
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n i n e -p o i n t c i rc le

C
B

A

Feuerbach Theorem.

r =
1

2
(1−OI2)

=
1

2
(1− |− t1t2t3(t1 + t2 + t3)|2)

=
1

2
(1− |t1 + t2 + t3|2)

=
1

2
− IF.

This means that IF is equal to the difference between the radii of the
nine-point circle and the incircle. These two circles are therefore tangent
internally.
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Exercise

Complete the proof of the Feuerbach theorem.

1. IAF =
1
2 |− t1 + t2 + t3|2.

2. If dA is the distance from O to IA, then dA = |− t1 + t2 + t3|.
3. The exradius rA = IAF − 1

2 .

6.3.1 The Feuerbach point

Indeed, the three lines each joining the point of contact of the nine-point
with an excircle to the opposite vertex of the triangle are concurrent.

Exercise

1. Let D be the midpoint of the side BC of triangle ABC. Show that
one of the common tangents of the circles I(N) and D(N) is parallel
to BC.

I
N

D CB

A

2. The nine-point circle is tangent to the circumcircle if and only if the
triangle is right.

3. More generally, the nine-point circle intersects the circumcircle only if
one of α, β, γ ≥ π

2 . In that case, they intersect at an angle arccos(1+
2 cosα cosβ cos γ).
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6.4

The shape and orientation of a triangle with vertices z1, z2,z3 is determined
by the ratio

z3 − z1

z2 − z1
.

6.4.1

Two triangles with vertices (z1, z2, z3) and (w1, w2, w3) are similar with the
same orientation if and only if

z3 − z1

z2 − z1
=
w3 −w1

w2 −w1
.

Equivalently,

det

 z1 w1 1
z2 w2 1
z3 w3 1

 = 0.
Exercise

1. Three distinct points z1, z2, z3 are collinear if and only if
z3−z1
z2−z1

is a real
number.

2. Three distinct points z1, z2, z3 are collinear if and only if

det

 z1 z1 1
z2 z2 1
z3 z3 1

 = 0.
3. The equation of the line joining two distinct points z1 and z2 is

z = Az +B,

where

A =
z1 − z2

z1 − z2
, B =

z1z2 − z2z1

z1 − z2
.

4. Show that if z = Az+B represents a line of slope λ, then A is a unit
complex number, and λ = −1−A

1+Ai.
5. The mirror image of a point z in the line z = Az + B is the point

Az +B.
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6.4.2

Let ω denote a complex cube root of unity:

ω =
1

2
(−1 +

√
3i).

This is a root of the quadratic equation x2+x = 1 = 0, the other root being

ω2 = ω =
1

2
(−1−

√
3i).

Note that 1,ω,ω2 are the vertices of an equilateral triangle (with counter -
clockwise orientation).

6.4.3

z1, z2, z3 are the vertices of an equilateral triangle (with counter clockwise
orientation) if and only if

z1 + ωz2 + ω
2z3 = 0.

Exercise

1. If u and v are two vertices of an equilateral triangle, find the third
vertex. 1

2. If z1, z2, z3 and w1, w2, w3 are the vertices of equilateral triangles
(with counter clockwise orientation), then so are the midpoints of the
segments z1w1, z2w2, and z3w3.

3. If z1, z2 are two adjancent vertices of a square, find the coordinates of
the remaining two vertices, and of the center of the square.

4. On the three sides of triangle ABC, construct outward squares. Let
A0, B0, C 0 be the centers of the squares on BC, CA, AB respectively,
show that AA0 is perpendicular to, and has the same length as B0C 0.

5. OAB, OCD, DAX , and BCY are equilateral triangles with the same
orientation. Show that the latter two have the same center. 2

1If uvw is an equilateral triangle with counterclockwise orientation, w = −ωu−ω2v =
−ωu+ (1 + ω)v. If it has clockwise orientation, w = (1 + ω)u− ωv.

2More generally, if OAB (counterclockwise) and OCD (clockwise) are similar triangles.
The triangles CAX (counterclockwise) and DYB (clockwise), both similar to the first
triangle, have the same circumcenter. (J.Dou, AMME 2866, 2974).
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Y

X

C

D

B

A

O

X Y

D

C

B

A
O

6.4.4 Napoleon’s Theorem

If on each side of a given triangle, equilateral triangles are drawn, either all
outside or all inside the triangle, the centers of these equilateral triangles
form an equilateral triangle.

Proof. Let ω be a complex cube root of unity, so that the third vertex of
an equilateral triangle on z1z2 is z

0
3 := −(ωz1 + ω

2z2). The center of this
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equilateral triangle is

w3 =
1

3
((1−ω)z1+ (1− ω2)z2) =

1− ω
3

[z1 + (1+ ω)z2] =
1− ω
3

[z1 − ω2z2].

Likewise, the centers of the other two similarly oriented equilateral triangles
are

w1 =
1− ω
3

[z3 − ω2z1], w2 =
1− ω
3

[z2 − ω2z3].

These form an equilateral triangle since

w1 + ωw2 + ω
2w3

=
1− ω
3

[z3 + ωz2 + ω
2z1 − ω2(z1 + ωz3 + ω

2z2)]

= 0.

Exercise

1. (Fukuta’s generalization of Napoleon’s Theorem) 3 Given triangle ABC,

let
X1

Y1

Z1

be points dividing the sides
BC
CA
AB

in the same ratio 1−k : k. De-

note by
X2

Y2

Z2

their isotomic conjugate on the respective sides. Complete

the following equilateral triangles, all with the same orientation,

X1X2X3, Y1Y2Y3, Z1Z2Z3, Y2Z1X
0
3, Z2X1Y

0
3 , X2Y1Z

0
3.

(a) Show that the segments X3X
0
3, Y3Y

0
3 and Z3Z

0
3 have equal lengths,

60◦ angles with each other, and are concurrent.

(b) Consider the hexagon X3Z
0
3Y3X

0
3Z3Y

0
3 . Show that the centroids

of the 6 triangles formed by three consecutive vertices of this hexagon
are themselves the vertices of a regular hexagon, whose center is the
centroid of triangle ABC.

3Mathematics Magazine, Problem 1493.
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c e n tro id

Z3

Y '3

X3

Z '3

Y3
X '3

Z1

X2

Y1Z2

X1

Y2

C

B

A

6.5 Concyclic points

Four non-collinear points z1, z2, z3, z4 are concyclic if and only if the cross
ratio

(z1, z2; z3, z4) :=
z4 − z1

z3 − z1
/
z4 − z2

z3 − z2
=
(z3 − z2)(z4 − z1)

(z3 − z1)(z4 − z2)

is a real number.

z4

z3

z1

z2

z4

z3

z1 z2
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Proof. Suppose z1 and z2 are on the same side of z3z4. The four points are
concyclic if the counter clockwise angles of rotation from z1z3 to z1z4 and
from z2z3 to z2z4 are equal. In this case, the ratio

z4 − z1

z3 − z1
/
z4 − z2

z3 − z2

of the complex numbers is real, (and indeed positive).
On the other hand, if z1, z2 are on opposite sides of z3z4, the two angles

differ by π, and the cross ratio is a negative real number.

6.6 Construction of the regular 17-gon

6.6.1 Gauss’ analysis

Suppose a regular 17−gon has center 0 ∈ C and one vertex represented by
the complex number 1. Then the remaining 16 vertices are the roots of the
equation

x17 − 1
x− 1 = x16 + x15 + · · ·+ x+ 1 = 0.

If ω is one of these 16 roots, then these 16 roots are precisely ω,ω2, . . . ,ω15,ω16.
(Note that ω17 = 1.) Geometrically, if A0, A1 are two distinct vertices of a
regular 17−gon, then successively marking vertices A2, A3, . . . , A16 with

A0A1 = A1A2 = . . . = A14A15 = A15A16,

we obtain all 17 vertices. If we write ω = cos θ + i sin θ, then ω + ω16 =
2 cos θ. It follows that the regular 17−gon can be constructed if one can
construct the number ω+ω16. Gauss observed that the 16 complex numbers
ωk, k = 1, 2, . . . , 16, can be separated into two “groups” of eight, each with
a sum constructible using only ruler and compass. This is decisively the
hardest step. But once this is done, two more applications of the same idea
eventually isolate ω+ω16 as a constructible number, thereby completing the
task of construction. The key idea involves the very simple fact that if the
coefficients a and b of a quadratic equation x2−ax+b = 0 are constructible,
then so are its roots x1 and x2. Note that x1 + x2 = a and x1x2 = b.

Gauss observed that, modulo 17, the first 16 powers of 3 form a permu-
tation of the numbers 1, 2, . . . , 16:

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3k 1 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6
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Let

y1 = ω + ω9 + ω13 + ω15 + ω16 + ω8 + ω4 + ω2,
y2 = ω3 + ω10 + ω5 + ω11 + ω14 + ω7 + ω12 + ω6.

Note that
y1 + y2 = ω + ω

2 + · · ·+ ω16 = −1.
Most crucial, however, is the fact that the product y1y2 does not depend
on the choice of ω. We multiply these directly, but adopt a convenient
bookkeeping below. Below each power ωk, we enter a number j (from 1 to
8 meaning that ωk can be obtained by multiplying the jth term of y1 by an
appropriate term of y2 (unspecified in the table but easy to determine):

ω ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 ω11 ω12 ω13 ω14 ω15 ω16

3 2 2 1 4 1 1 1 4 3 1 1 1 2 1 2
4 3 3 2 5 2 3 3 5 4 5 2 5 6 2 3
6 5 4 4 6 3 7 4 7 5 6 4 6 7 6 7
7 6 6 5 8 5 8 8 8 7 7 8 8 8 7 8

From this it is clear that

y1y2 = 4(ω + ω
2 + · · ·+ ω16) = −4.

It follows that y1 and y2 are the roots of the quadratic equation

y2 + y − 4 = 0,
and are constructible. We may take

y1 =
−1 +√17

2
, y2 =

−1−√17
2

.

Now separate the terms of y1 into two “groups” of four, namely,

z1 = ω + ω
13 + ω16 + ω4, z2 = ω

9 + ω15 + ω8 + ω2.

Clearly, z1 + z2 = y1. Also,

z1z2 = (ω+ω
13+ω16+ω4)(ω9+ω15+ω8+ω2) = ω+ω2+ · · ·+ω16 = −1.

It follows that z1 and z2 are the roots of the quadratic equation

z2 − y1z − 1 = 0,
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and are constructible, since y1 is constructible. Similarly, if we write

z3 = ω
3 + ω5 + ω14 + ω12, z4 = ω

10 + ω11 + ω7 + ω6,

we find that z3 + z4 = y2, and z3z4 = ω + ω
2 + · · · + ω16 = −1, so that z3

and z4 are the roots of the quadratic equation

z2 − y2z − 1 = 0

and are also constructible.

Finally, further separating the terms of z1 into two pairs, by putting

t1 = ω + ω
16, t2 = ω

13 + ω4,

we obtain

t1 + t2 = z1,
t1t2 = (ω + ω16)(ω13 + ω4) = ω14 + ω5 + ω12 + ω3 = z3.

It follows that t1 and t2 are the roots of the quadratic equation

t2 − z1t+ z3 = 0,

and are constructible, since z1 and z3 are constructible.

6.6.2 Explicit construction of a regular 17-gon 4

To construct two vertices of the regular 17-gon inscribed in a given circle
O(A).

1. On the radius OB perpendicular to OA, mark a point J such that
OJ = 1

4OA.

2. Mark a point E on the segment OA such that 6 OJE = 1
4
6 OJA.

3. Mark a point F on the diameter through A such that O is between E
and F and 6 EJF = 45◦.

4. With AF as diameter, construct a circle intersecting the radius OB
at K.

4H.S.M.Coxeter, Introduction to Geometry, 2nd ed. p.27.
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5. Mark the intersections of the circle E(K) with the diameter of O(A)
through A. Label the one between O and A points P4, and the other
and P6.

6. Construct the perpendicular through P4 and P6 to intersect the circle
O(A) at A4 and A6.

5

A6
A4

P4P6

K

F E

J

B

AO

Then A4, A6 are two vertices of a regular 17-gon inscribed in O(A). The
polygon can be completed by successively laying off arcs equal to A4A6,
leading to A8, A10, . . .A16, A1 = A, A3, A5, . . . , A15, A17, A2.

5Note that P4 is not the midpoint of AF .



Chapter 7

The Menelaus and Ceva
Theorems

7.1

7.1.1 Sign convention

Let A and B be two distinct points. A point P on the line AB is said to
divide the segment AB in the ratio AP : PB, positive if P is between A
and B, and negative if P is outside the segment AB.

PA
BA BP B

A P

AP/PB > 0.-1 < AP/PB < 0. AP/PB < -1.

7.1.2 Harmonic conjugates

Two points P and Q on a line AB are said to divide the segment AB
harmonically if they divide the segment in the same ratio, one externally
and the other internally:

AP

PB
= −AQ

QB
.

We shall also say that P and Q are harmonic conjugates with respect to the
segment AB.

87
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7.1.3

Let P and Q be harmonic conjugates with respect to AB. If AB = d,
AP = p, and AQ = q, then d is the harmonic mean of p and q, namely,

1

p
+
1

q
=
2

d
.

Proof. This follows from

p

d− p = −
q

d− q .

7.1.4

We shall use the abbreviation (A,B;P,Q) to stand for the statement P , Q
divide the segment AB harmonically.

Proposition

If (A,B;P,Q), then (A,B;Q,P ), (B,A;P,Q), and (P,Q;A,B).

Therefore, we can speak of two collinear (undirected) segments dividing
each other harmonically.

Exercise

1. Justify the following construction of harmonic conjugate.

Q

P'

P

M

C

BA

Given AB, construct a right triangle ABC with a right angle at B
and BC = AB. Let M be the midpoint of BC.
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For every point P (except the midpoint of AB), let P 0 be the point on
AC such that PP 0 ⊥ AB.
The intersection Q of the lines P 0M and AB is the harmonic conjugate
of P with respect to AB.

7.2 Apollonius Circle

7.2.1 Angle bisector Theorem

If the internal (repsectively external) bisector of angle BAC intersect the
line BC at X (respectively X 0), then

BX : XC = c : b; BX 0 : X 0C = c : −b.

b
cc b

X'CB

A

X C

A

B

BX : XC =  c : -b.BX : XC = c : b.

7.2.2 Example

The points X and X 0 are harmonic conjugates with respect to BC, since

BX : XC = c : b, and BX 0 : X 0C = c : −b.

7.2.3

A and B are two fixed points. For a given positive number k 6= 1, 1 the
locus of points P satisfying AP : PB = k : 1 is the circle with diameter
XY , where X and Y are points on the line AB such that AX : XB = k : 1
and AY : Y B = k : −1.

1If k − 1, the locus is clearly the perpendicular bisector of the segment AB.
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YX

P

BA

Proof. Since k 6= 1, points X and Y can be found on the line AB satisfying
the above conditions.

Consider a point P not on the line AB with AP : PB = k : 1. Note that
PX and PY are respectively the internal and external bisectors of angle
APB. This means that angle XPY is a right angle.

Exercise

1. The bisectors of the angles intersect the sides BC, CA, AB respec-
tively at P , Q, and R. P 0, Q0, and R0 on the sides CA, AB, and BC
respectivley such that PP 0//BC, QQ0//CA, and RR0//AB. Show
that

1

PP 0
+

1

QQ0
+

1

RR0
= 2

µ
1

a
+
1

b
+
1

c

¶
.

R '

Q '
P '

R

Q

P CB

A

2. Suppose ABC is a triangle with AB 6= AC, and let D,E, F,G be
points on the line BC defined as follows: D is the midpoint of BC,
AE is the bisector of 6 BAC, F is the foot of the perpeandicular from
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A to BC, and AG is perpendicular to AE (i.e. AG bisects one of the
exterior angles at A). Prove that AB ·AC = DF · EG.

G DF E CB

A

3. If AB = d, and k 6= 1, the radius of the Apollonius circle is k
k2−1d.

4. Given two disjoint circles (A) and (B), find the locus of the point P
such that the angle between the pair of tangents from P to (A) and
that between the pair of tangents from P to (B) are equal. 2

7.3 The Menelaus Theorem

Let X , Y , Z be points on the lines BC, CA, AB respectively. The points
X , Y , Z are collinear if and only if

BX

XC
· CY
Y A

· AZ
ZB

= −1.

W

Y

Z

XCB

A

W

X

Y

Z

CB

A

2Let a and b be the radii of the circles. Suppose each of these angles is 2θ. Then
a
AP

= sin θ = b
BP
, and AP : BP = a : b. From this, it is clear that the locus of P is the

circle with the segment joining the centers of similitude of (A) and (B) as diameter.
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Proof. (=⇒) Let W be the point on AB such that CW//XY . Then,

BX

XC
=
BZ

ZW
, and

CY

Y A
=
WZ

ZA
.

It follows that

BX

XC
·CY
Y A

· AZ
ZB

=
BZ

ZW
·WZ
ZA

· AZ
ZB

=
BZ

ZB
·WZ
ZW

·AZ
ZA

= (−1)(−1)(−1) = −1.

(⇐=) Suppose the line joining X and Z intersects AC at Y 0. From
above,

BX

XC
· CY

0

Y 0A
· AZ
ZB

= −1 = BX

XC
· CY
Y A

· AZ
ZB

.

It follows that
CY 0

Y 0A
=
CY

Y A
.

The points Y 0 and Y divide the segment CA in the same ratio. These must
be the same point, and X, Y , Z are collinear.

Exercise

1. M is a point on the medianAD of4ABC such thatAM :MD = p : q.
The line CM intersects the side AB at N . Find the ratio AN : NB.
3

2. The incircle of 4ABC touches the sides BC, CA, AB at D, E, F
respectively. Suppose AB 6= AC. The line joining E and F meets BC
at P . Show that P and D divide BC harmonically.

X

D

Z Y

F
E

CB

A

PD

E

F

CB

A

3Answer: AN : NB = p : 2q.



YIU: Euclidean Geometry 93

3. The incircle of 4ABC touches the sides BC, CA, AB at D, E, F
respectively. X is a point inside 4ABC such that the incircle of
4XBC touches BC at D also, and touches CX and XB at Y and Z
respectively. Show that E, F , Z, Y are concyclic. 4

Y

X

I

Y '

X '

IA

CA

B

4. Given a triangle ABC, let the incircle and the ex-circle on BC touch
the side BC at X and X 0 respectively, and the line AC at Y and Y 0

respectively. Then the lines XY and X 0Y 0 intersect on the bisector of
angle A, at the projection of B on this bisector.

7.4 The Ceva Theorem

Let X , Y , Z be points on the lines BC, CA, AB respectively. The lines
AX, BY , CZ are concurrent if and only if

BX

XC
· CY
Y A

· AZ
ZB

= +1.

Proof. (=⇒) Suppose the lines AX , BY , CZ intersect at a point P . Con-
sider the line BPY cutting the sides of 4CAX . By Menelaus’ theorem,

CY

Y A
· AP
PX

· XB
BC

= −1, or
CY

Y A
· PA
XP

· BX
BC

= +1.

4IMO 1996.
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Also, consider the line CPZ cutting the sides of 4ABX . By Menelaus’
theorem again,

AZ

ZB
· BC
CX

· XP
PA

= −1, or
AZ

ZB
· BC
XC

· XP
PA

= +1.

Y

P

Z

XCB

A

Z

P

Y

X CB

A

Multiplying the two equations together, we have

CY

Y A
· AZ
ZB

· BX
XC

= +1.

(⇐=) Exercise.

7.5 Examples

7.5.1 The centroid

If D, E, F are the midpoints of the sides BC, CA, AB of 4ABC, then
clearly

AF

FB
· BD
DC

· CE
EA

= 1.

The medians AD, BE, CF are therefore concurrent (at the centroid G of
the triangle).

Consider the line BGE intersecting the sides of4ADC. By the Menelau
theorem,

−1 = AG

GD
· DB
BC

· CE
EA

=
AG

GD
· −1
2
· 1
1
.

It follows that AG : GD = 2 : 1. The centroid of a triangle divides each
median in the ratio 2:1.
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7.5.2 The incenter

Let X , Y , Z be points on BC, CA, AB such that

AX
BY
CZ

bisects

6 BAC
6 CBA
6 ACB

,

then
AZ

ZB
=
b

a
,

BX

XC
=
c

b
,

CY

Y A
=
a

c
.

It follows that
AZ

ZB
· BX
XC

· CY
Y A

=
b

a
· c
b
· a
c
= +1,

and AX , BY , CZ are concurrent, at the incenter I of the triangle.

Exercise

1. Use the Ceva theorem to justify the existence of the excenters of a
triangle.

2. Let AX, BY , CZ be cevians of 4ABC intersecting at a point P .
(i) Show that if AX bisects angle A and BX · CY = XC · BZ, then
4ABC is isosceles.
(ii) Show if if AX, BY , CZ are bisectors and BP · ZP = BZ · AP ,
then 4ABC is a right triangle.

3. Suppose three cevians, each through a vertex of a triangle, trisect each
other. Show that these are the medians of the triangle.

4. ABC is a right triangle. Show that the lines AP , BQ, and CR are
concurrent.

R

Q

P

C

B A
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5. 5 If three equal cevians divide the sides of a triangle in the same ratio
and the same sense, the triangle must be equilateral.

6. Suppose the bisector of angle A, the median on the side b, and the
altitude on the side c are concurrent. Show that 6

cosα =
c

b+ c
.

7. Given triangle ABC, construct points A0, B0, C 0 such that ABC 0,
BCA0 and CAB0 are isosceles triangles satisfying

6 BCA0 = 6 CBA0 = α, 6 CAB0 = 6 ACB0 = β, 6 ABC 0 = 6 BAC 0 = γ.

Show that AA0, BB0, and CC 0 are concurrent. 7

7.6 Trigonmetric version of the Ceva Theorem

7.6.1

Let X be a point on the side BC of triangle ABC such that the directed
angles 6 BAX = α1 and 6 XAC = α2. Then

BX

XC
=
c

b
· sinα1

sinα2
.

~
����

~
����~

����

~
����

Z Y

X CB

A

X CB

A

Proof. By the sine formula,

BX

XC
=
BX/AX

XC/AX
=
sinα1/ sinβ

sinα2/ sin γ
=
sin γ

sinβ
· sinα1

sinα2
=
c

b
· sinα1

sinα2
.

5Klamkin
6AMME 263; CMJ 455.
7A0B0C0 is the tangential triangle of ABC.
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7.6.2

Let X , Y , Z be points on the lines BC, CA, AB respectively. The lines
AX, BY , CZ are concurrent if and only if

sinα1

sinα2
· sinβ1

sinβ2
· sin γ1

sin γ2
= +1.

Proof. Analogous to
BX

XC
=
c

b
· sinα1

sinα2

are
CY

Y A
=
a

c
· sinβ1

sinβ2
,

AZ

ZB
=
b

a
· sin γ1

sin γ2
.

Multiplying the three equations together,

AZ

ZB
· BX
XC

· CY
Y B

=
sinα1

sinα2
· sinβ1

sinβ2
· sin γ1

sin γ2
.

Exercise

1. Show that the three altitudes of a triangle are concurrent (at the or-
thocenter H of the triangle).

2. Let A0, B0, C 0 be points outside 4ABC such that A0BC, B0CA and
C 0AB are similar isosceles triangles. Show that AA0, BB0, CC 0 are
concurrent. 8

IB

IA

IC

CB

A

8Solution. Let X be the intersection of AA0 and BC. Then BX
XC

= sin(β+ω)
sin(γ+ω) · sin γ

sinβ .
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3. Show that the perpendiculars from IA to BC, from IB to CA, and
from IC to AB are concurrent. 9

7.7 Mixtilinear incircles

Suppose the mixtilinear incircles in angles A, B, C of triangle ABC touch
the circumcircle respectively at the points A0, B0, C 0. The segments AA0,
BB0, and CC 0 are concurrent.

Ñ����

�����

�����

~����

~����

~����
~����

A '

B '

C '

A 'K

X2

O

B

CA

B

A
C

Proof. We examine how the mixtilinear incircle divides the minor arc BC
of the circumcircle. Let A0 be the point of contact. Denote α1 := 6 A0AB
and α2 := 6 A0AC. Note that the circumcenter O, and the points K, A0 are
collinear. In triangle KOC, we have

OK = R− ρ1, OC = R, 6 KOC = 2α2,

where R is the circumradius of triangle ABC. Note that CX2 =
b(s−c)
s , and

KC2 = ρ2
1 + CX

2
2 . Applying the cosine formula to triangle KOC, we have

2R(R− ρ1) cos 2α2 = (R− ρ1)
2 +R2 − ρ2

1 −
µ
b(s− c)
s

¶2

.

Since cos 2α2 = 1− 2 sin2 α2, we obtain, after rearrangement of the terms,

sinα2 =
b(s− c)
s

· 1p
2R(R− ρ1)

.

9Consider these as cevians of triangle IAIBIC .
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Similarly, we obtain

sinα1 =
c(s− b)
s

· 1p
2R(R− ρ) .

It follows that
sinα1

sinα2
=
c(s− b)
b(s− c) .

If we denote by B0 and C 0 the points of contact of the circumcircle with the
mixtilinear incircles in angles B and C respectively, each of these divides
the respective minor arcs into the ratios

sinβ1

sinβ2
=
a(s− c)
c(s− a) ,

sin γ1

sin γ2
=
b(s− a)
a(s− b) .

From these,

sinα1

sinα2
· sinβ1

sinβ2
· sin γ1

sin γ2
=
a(s− c)
c(s− a) ·

b(s− a)
a(s− b) ·

c(s− b)
b(s− c) = +1.

By the Ceva theorem, the segments AA0, BB0 and CC 0 are concurrent.

Exercise

1. The mixtilinear incircle in angle A of triangle ABC touches its circum-
circle at A0. Show that AA0 is a common tangent of the mixtilinear
incircles of angle A in triangle AA0B and of angle A in triangle AA0C.
10

A '

A

C

B

10Problem proposal to Crux Mathematicorum.
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7.8 Duality

Given a triangle ABC, let

X, X 0

Y, Y 0

Z, Z 0
be harmonic conjugates with respect to the side

BC
CA
AB

.

The points X 0, Y 0, Z 0 are collinear if and only if the cevians AX, BY ,
CZ are concurrent.

X

P

X'

Z

Y

Y'

Z'

CB

A

Proof. By assumption,

BX 0

X 0C
= −BX

XC
,

CY 0

Y 0A
= −CY

Y A
,

AZ 0

Z 0B
= −AZ

ZB
.

It follows that

BX 0

X 0C
· CY

0

Y 0A
· AZ

0

Z 0B
= −1 if and only if

BX

XC
· CY
Y A

· AZ
ZB

= +1.

The result now follows from the Menelaus and Ceva theorems.

7.8.1 Ruler construction of harmonic conjugate

Given two points A and B, the harmonic conjugate of a point P can be
constructed as follows. Choose a point C outside the line AB. Draw the
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lines CA, CB, and CP . Through P draw a line intersecting CA at Y and
CB at X. Let Z be the intersection of the lines AX and BY . Finally, let Q
be the intersection of CZ with AB. Q is the harmonic conjugate of P with
respect to A and B.

7

55
3

2
2

6
4

4

2 2

2

H

6
4

4

1

A BOQ

5

3

5

1

P BA

h a rm o n i c  m e a nH a rm o n ic  c o n j u g a te

7.8.2 Harmonic mean

Let O, A, B be three collinear points such that OA = a and OB = b. If H
is the point on the same ray OA such that h = OH is the harmonic mean
of a and b, then (O,H;A,B). Since this also means that (A,B;O,H), the
point H is the harmonic conjugate of O with respect to the segment AB.

7.9 Triangles in perspective

7.9.1 Desargues Theorem

Given two triangles ABC and A0B0C 0, the lines AA0, BB0, CC 0 are con-

current if and only if the intersections of the pairs of lines
AB,A0B0

BC,B0C 0
CA,C 0A0

are

collinear.
Proof. Suppose AA0, BB0, CC 0 intersect at a point X. Applying Menelaus’
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theorem to the triangle
XAB
XBC
XCA

and transversal
A0B0R
B0C 0P
C 0A0Q

, we have

XA0

A0A
· AR
RB

· BB
0

B0X
= −1, XB0

B0B
· BP
PC

· CC
0

C 0X
= −1, XC 0

C 0C
· CQ
QA

· AA
0

A0X
= −1.

Multiplying these three equation together, we obtain

AR

RB
· BP
PC

· CQ
QA

= −1.

By Menelaus’ theorem again, the points P , Q, R are concurrent.

P
Q

R

C '

X

B '

A '

C
B

A

7.9.2

Two triangles satisfying the conditions of the preceding theorem are said to
be perspective. X is the center of perspectivity, and the line PQR the axis
of perspectivity.

7.9.3

Given two triangles ABC and A0B0C 0, if the lines AA0, BB0, CC 0 are par-

allel, then the intersections of the pairs of lines
AB A0B0

BC B0C 0

CA C 0A0
are collinear.
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P

Q

R

B '

C '

A '

C

B

A

Proof.

BP

PC
· CQ
QA

· AR
RB

=

µ
−BB

0

CC 0

¶µ
−CC

0

AA0

¶µ
−AA

0

BB0

¶
= −1.

7.9.4

If the correpsonding sides of two triangles are pairwise parallel, then the
lines joining the corresponding vertices are concurrent.
Proof. Let X be the intersection of BB0 and CC 0. Then

CX

XC 0
=
BC

B0C 0
=
CA

C 0A0
.

The intersection of AA0 and CC 0 therefore coincides with X .

X

C '
B '

A '

CB

A

7.9.5

Two triangles whose sides are parallel in pairs are said to be homothetic. The
intersection of the lines joining the corresponding vertices is the homothetic
center. Distances of corresponding points to the homothetic center are in
the same ratio as the lengths of corresponding sides of the triangles.



Chapter 8

Homogeneous coordinates

8.1 Coordinates of points on a line

8.1.1

Let B and C be two distinct points. Each point X on the line BC is uniquely
determined by the ratio BX : XC. If BX : XC = λ0 : λ, then we say that X
has homogeneous coordinates λ : λ0 with respect to the segment BC. Note
that λ+λ0 6= 0 unless X is the point at infinity on the line BC. In this case,
we shall normalize the homogeneous coordinates to obtain the barycentric
coordinate of X : λ

λ+λ0B +
λ0
λ+λ0C.

Exercise

1. Given two distinct points B, C, and real numbers y, z, satisfying
y+ z = 1, yB+ zC is the point on the line BC such that BX : XC =
z : y.

2. If λ 6= 1
2 , the harmonic conjugate of the point P = (1 − λ)A + λB is

the point

P 0 =
1− λ
1− 2λA−

λ

1− 2λB.

8.2 Coordinates with respect to a triangle

Given a triangle ABC (with positive orientation), every point P on the plane
has barycenteric coordinates of the form P : xA + yB + zC, x+ y + z = 1.

104
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This means that the areas of the oriented triangles PBC, PCA and PAB
are respectively

4PBC = x4, 4PCA = y4, and 4PAB = z4.
We shall often identify a point with its barycentric coordinates, and write
P = xA + yB + zC. In this case, we also say that P has homogeneous
coordinates x : y : z with respect to triangle ABC.

X

Z Y
P

C

A

B

P

CB

A

Exercises

If P has homogeneous coordinates of the form 0 : y : z, then P lies on the
line BC.

8.2.1

Let X be the intersection of the lines AP and BC. Show that X has
homogeneous coordinates 0 : y : z, and hence barycentric coordinates

X =
y

y + z
B +

z

y + z
C.

This is the point at infinity if and only if y+z = 0. Likewise, if Y and Z are
respectively the intersections of BP with CA, and of CP with AB, then

Y =
x

z + x
A+

z

z + x
C, Z =

x

x+ y
A+

y

x+ y
B.

8.2.2 Ceva Theorem

If X, Y , and Z are points on the lines BC, CA, and AB respectively such
that

BX : XC = µ : ν,
AY : Y C = λ : ν,
AZ : ZB = λ : µ ,
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and if 1
λ +

1
µ +

1
ν 6= 0, then the lines AX , BY , CZ intersect at the point P

with homogeneous coordinates

1

λ
:
1

µ
:
1

ν
= µν : λν : λµ

with respect to the triangle ABC. In barycentric coordinates,

P =
1

µν + λν + λµ
(µν ·A+ λν ·B + λµ · C).

8.2.3 Examples

Centroid

The midpoints D, E, F of the sides of triangle ABC divide the sides in the
ratios

BD : DC = 1 : 1,
AE : EC = 1 : 1,
AF : FB = 1 : 1 .

The medians intersect at the centroidG, which has homogeneous coordinates
1 : 1 : 1, or

G =
1

3
(A+B + C).

Incenter

The (internal) bisectors of the sides of triangle ABC intersect the sides at
X , Y , Z respectively with

BX : XC = c : b = ac : ab,
AY : Y C = c : a = bc : ab,
AZ : ZB = b : a = bc : ac .

These bisectors intersect at the incenter I with homogeneous coordinates

1

bc
:
1

ca
:
1

ab
= a : b : c.
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8.2.4 Menelaus Theorem

If X, Y , and Z are points on the lines BC, CA, and AB respectively such
that

BX : XC = µ : −ν,
AY : Y C = −λ : ν,
AZ : ZB = λ : −µ ,

then the points X , Y , Z are collinear.

8.2.5 Example

Consider the tangent at A to the circumcircle of triangle ABC. Suppose
AB 6= AC. This intersects the line BC at a point X. To determine the
coordinates of X with respect to BC, note that BX · CX = AX2. From
this,

BX

CX
=
BX · CX
CX2

=
AX2

CX2
=

µ
AX

CX

¶2

=

µ
AB

CA

¶2

=
c2

b2
,

where we have made use of the similarity of the triangles ABX and CAX .
Therefore,

BX : XC = c2 : −b2.

X B C

A

Y

X

Z

B

A

C

Similarly, if the tangents at B and C intersect respectively the lines CA
and AB at Y and Z, we have

BX : XC = c2 : −b2 = 1
b2 : − 1

c2 ,
AY : Y C = −c2 : a2 = − 1

a2 : 1
c2 ,

AZ : ZB = b2 : −a2 = 1
a2 : − 1

b2 .

From this, it follows that the points X, Y , Z are collinear.
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8.3 The centers of similitude of two circles

8.3.1 External center of similitude

Consider two circles, centers A, B, and radii r1 and r2 respectively.

Suppose r1 6= r2. Let AP and BQ be (directly) parallel radii of the
circles. The line PQ always passes a fixed point K on the line AB. This is
the external center of similitude of the two circles, and divides the segment
AB externally in the ratio of the radii:

AK : KB = r1 : −r2.

The point K has homogeneous coordinates r2 : −r1 with respect to the
segment AB,

H

Q'

K

Q

P

BA

8.3.2 Internal center of similitude

If AP and BQ0 are oppositely parallel radii of the circles, then the line PQ0

always passes a fixed point H on the line AB. This is the internal center of
similitude of the two circles, and divides the segment AB internally in the
ratio of the radii:

AH : HB = r1 : r2.

The point H has homogeneous coordinates r2 : r1 with respect to the seg-
ment AB.

Note that H and K divide the segment AB harmonically.
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Example

Consider three circles Oi(ri), i = 1, 2, 3, whose centers are not collinear and
whose radii are all distinct. Denote by Ck, k = 1, 2, 3, the internal center of
similitude of the circles (Oi) and (Oj), i, j 6= k. Since

O2C1 : C1O3 = r2 : r3,
O1C2 : C2O3 = r1 : r3,
O1C3 : C3O2 = r1 : r2 ,

the lines O1A1, O2A2, O3A3 are concurrent, their intersection being the
point

1

r1
:
1

r2
:
1

r3

with respect to the triangle O1O2O3.

C3

C1

C2

P2

P1

P3

O1

O2

O3

O1

O2
O3

Exercise

1. Let
P1

P2

P3

be the external center of similitude of the circles
(O2), (O3)
(O3), (O1)
(O1), (O2)

.

Find the homogeneous coordinates of the points P1, P2, P3 with respect
to the triangle O1O2O3, and show that they are collinear.



YIU: Euclidean Geometry 110

2. Given triangle ABC, the perpendiculars from the excenters
IB
IC
IA

to

AB
BC
CA

and
IC
IA
IB

to
AC
CA
AB

intersect at
A0
B0

C 0
. Show that the lines AA0, BB0,

and CC 0 are concurrent. 1

8.4

Consider a circle with center K, radius ρ, tangent to the sides AB and AC,
and the circumcircle of triangle ABC. Let ² = 1 or −1 according as the
tangency with the circumcircle is external or internal. Since AK : AI = ρ :
r, AK : KI = ρ : −(ρ− r),

K =
1

r
[ρI − (ρ− r)A].

è

è

R
è

rèr
I

P
O

K
C

A B

I
O P

K

C

BA

Also, let P be the point of contact with the circumcircle. Since OP :
KP = R : ²ρ, we have OP : PK = R : −²ρ, and

P =
1

R+ ²ρ
(R ·K − ²ρ ·O) = −²ρ

R− ²ρ ·O +
R

R− ²ρ ·K.

Now, every point on the line AP is of the form

λP + (1− λ)A = λρ

r(R− ²ρ)(−²r ·O +R · I) + f(λ)A,
1CMJ408.894.408.S905.
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for some real number λ. Assuming A not on the line OI, it is clear that
AP intersects OI at a point with homogeneous −²r : R with respect to the
segment OI. In other words,

OX : XI = R : −²r.

This is the
external
internal

center of similitude of the circumcircle (O) and the in-

circle (I) according as ² =
−1
1
, i.e., the circle (K) touching the circumcircle

of ABC
internally
externally

.

In barycentric coordinates, this is the point

X =
1

R− ²r (−²r ·O +R · I).

This applies to the mixtilinear incircles (excircles) at the other two ver-
tices too.

8.4.1 Theorem

Let ABC be a given triangle. The three segments joining the each vertex of

the triangle to the point of contact of the corresponding mixtilinear
incircles
excircles

are concurrent at
external
internal

center of similitude of the circumcircle and the

incircle.

O l
f

f
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8.5 Isotomic conjugates

Let X be a point on the line BC. The unique point X 0 on the line satisfying
BX = −CX 0 is called the isotomic conjugate of X with respect to the
segment BC. Note that

BX 0

X 0C
=

µ
BX

XC

¶−1

.

P '

X '

Y '

Z '

X '

Z

Y

X
X

A

B C

P
B C

8.5.1

Let P be a point with homogeneous coordinates x : y : z with respect to a
triangle ABC. Denote by X, Y , Z the intersections of the lines AP , BP ,
CP with the sides BC, CA, AB. Clearly,

BX : XC = z : y, CY : Y A = x : z, AZ : ZB = y : x.

IfX 0, Y 0, and Z 0 are the isotomic conjugates ofX , Y , and Z on the respective
sides, then

BX 0 : X 0C = y : z,
AY 0 : Y 0C = x : z,
AZ 0 : Z 0B = x : y .

It follows that AX 0, BY 0, and CZ 0 are concurrent. The intersection P 0 is
called the isotomic conjugate of P (with respect to the triangle ABC). It
has homogeneous coordinates

1

x
:
1

y
:
1

z
.
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Exercise

1. If X = yB + zC, then the isotomic conjugate is X 0 = zB + yC.

2. X 0, Y 0, Z 0 are collinear if and only if X,Y,Z are collinear.

8.5.2 Gergonne and Nagel points

Suppose the incircle I(r) of triangle ABC touches the sides BC, CA, and
AB at the points X , Y , and Z respectively.

BX : XC = s− b : s− c,
AY : Y C = s− a : s− c,
AZ : ZB = s− a : s− b .

This means the cevians AX, BY , CZ are concurrent. The intersection
is called the Gergonne point of the triangle, sometimes also known as the
Gergonne point.

X

Y

Z

N

Y'
Z'

X'

A

B C

L
Z

Y

X

I

A

B C

Let X 0, Y 0, Z 0 be the isotomic conjugates of X, Y , Z on the respective
sides. The point X 0 is indeed the point of contact of the excircle IA(r1)
with the side BC; similarly for Y 0 and Z 0. The cevians AX 0, BY 0, CZ 0 are
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concurrent. The intersection is the Nagel point of the triangle. This is the
isotomic conjugate of the Gergonne point L.

Exercise

1. Which point is the isotomic conjugate of itself with respect to a given
triangle. 2

2. Suppose the excircle on the side BC touches this side at X 0. Show
that AN : NX 0 = a : s. 3

3. Suppose the incircle of 4ABC touches its sides BC, CA, AB at X ,
Y , Z respectively. Let A0, B0, C 0 be the points on the incircle dia-
metrically opposite to X , Y , Z respectively. Show that AA0, BB0 and
CC 0 are concurrent. 4

8.6 Isogonal conjugates

8.6.1

Given a triangle, two cevians through a vertex are said to be isogonal if
they are symmetric with respect to the internal bisector of the angle at the
vertex.

NM ED CB

A

CB

A

2The centroid.
3Let the excircle on the side CA touch this side at Y 0. Apply the Menelaus theorem

to 4AX0C and the line BNY 0 to obtain AN
NX0 =

a
s−a . From this the result follows.

4The line AX0 intersects the side BC at the point of contact X0 of the excircle on this
side. Similarly for BY 0 and CZ 0. It follows that these three lines intersect at the Nagel
point of the triangle.
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Exercise

1. Show that
BX∗

X∗C
=
c2

b2
· XC
BX

.

2. Given a triangle ABC, let D and E be points on BC such that
6 BAD = 6 CAE. Suppose the incircles of the triangles ABD and
ACE touch the side BC at M and N respectively. Show that

1

BM
+

1

MD
=

1

CN
+

1

NE
.

8.6.2

Given a point P , let la, lb, lc be the respective cevians through P the vertices
A, B, C of 4ABC. Denote by l∗a, l∗b , l

∗
c their isogonal cevians. Using

the trigonometric version of the Ceva theorem, it is easy to see that the
cevians l∗a, l∗b , l

∗
c are concurrent if and only if la, lb, lc are concurrent. Their

intersection P ∗ is called the isogonal conjugate of P with respect to 4ABC.

P *

A

B C

P

A

B C

8.6.3

Suppose P has homogeneous coordinates x : y : z with respect to triangle

ABC. If the cevian
AP
BP
CP

and its isogonal cevian respectively meet the side

BC
CA
AB

at
X
Y
Z
and

X∗
Y ∗

Z∗
, then since

BX : XC = z : y, AY : Y C = z : x, AZ : ZB = y : x,
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we have

BX∗ : X∗C = c2y : b2z = y
b2 : z

c2 ,

AY ∗ : Y ∗C = c2x : a2z = x
a2 : c2

z ,
AZ∗ : Z∗B = b2x : a2y = x

a2 : y
b2 .

From this it follows that the isogonal conjugate P ∗ has homogeneous coor-
dinates

a2

x
:
b2

y
:
c2

z
.

8.6.4 Circumcenter and orthocenter as isogonal conjugates

O

H = O *

The homogeneous coordinates of the circumcenter are

a cosα : b cosβ : c cos γ = a2(b2+ c2−a2) : b2(c2+a2− b2) : c2(a2+ b2− c2).

Exercise

1. Show that a triangle is isosceles if its circumcenter, orthocenter, and
an excenter are collinear. 5

8.6.5 The symmedian point

The symmedian point K is the isogonal conjugate of the centroid G. It has
homogeneous coordinates,

K = a2 : b2 : c2.

5Solution (Leon Bankoff) This is clear when α = 90◦. If α 6= 90◦, the lines AO
and AH are isogonal with respect to the bisector AIA, if O, H, IA are collinear, then
6 OAIA = 6 HAIA = 0 or 180◦, and the altitude AH falls along the line AIA. Hence, the
triangle is isosceles.
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X

ZY

A

B C

K

G

Exercise

1. Show that the lines joining each vertex to a common corner of the
squares meet at the symmedian point of triangle ABC.

8.6.6 The symmedians

If D∗ is the point on the side BC of triangle ABC such that AD∗ is the
isogonal cevian of the median AD, AD∗ is called the symmedian on the side
BC. The length of the symmedian is given by

ta =
2bc

b2 + c2
·ma =

bc
p
2(b2 + c2)− a2

b2 + c2
.

Exercise

1. ta = tb if and only if a = b.

2. If an altitude of a triangle is also a symmedian, then either it is isosceles
or it contains a right angle. 6

8.6.7 The exsymmedian points

Given a triangle ABC, complete it to a parallelogram BACA0. Consider
the isogonal cevian BP of the side BA0. Since each of the pairs BP , BA0,
and BA, BC is symmetric with respect to the bisector of angle B, 6 PBA =
6 A0BC = 6 BCA. It follows that BP is tangent to the circle ABC at B.
Similarly, the isogonal cevian of CA0 is the tangent at C to the circumcircle
of triangle ABC. The intersection of these two tangents at B and C to
the circumcircle is therefore the isogonal conjugate of A0 with respect to

6Crux 960.
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the triangle. This is the exsymmedian point KA of the triangle. Since A
0

has homogeneous coordinates −1 : 1 : 1 with respect to triangle ABC, the
exsymmedian point KA has homogeneous coordinates −a2 : b2 : c2. The
other two exsymmedian points KB and KC are similarly defined. These
exsymmedian points are the vertices of the tangential triangle bounded by
the tangents to the circumcircle at the vertices.

KA = −a2 : b2 : c2,
KB = a2 : −b2 : c2,
KC = a2 : b2 : −c2.

P I O

A '

CA

B

KA

KC

KB

CB

A

Exercise

1. What is the isogonal conjugate of the incenter I ?

2. Given λ, µ, ν, there is a (unique) point P such that

PP1 : PP2 : PP3 = λ : µ : ν

if and only if each “nontrivial” sum of aλ, bµ and cν is nonzero. This
is the point

aλ

aλ+ bµ+ cν
A+

bµ

aλ+ bµ+ cν
B +

cν

aλ+ bµ+ cν
C.

3. Given a triangle ABC, show that its tangential triangle is finite unless
ABC contains a right angle.
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(a) The angles of the tangential triangle are 180◦−2α, 180◦− 2β, and
180◦ − 2γ, (or 2α, 2β and 2γ − 180◦ if the angle at C is obtuse).
(b) The sides of the tangential triangle are in the ratio

sin 2α : sin 2β : sin 2γ = a2(b2+c2−a2) : b2(c2+a2−b2) : c2(a2+b2−c2).

4. Justify the following table for the homogeneous coordinates of points
associated with a triangle.

Point Symbol Homogeneous coordinates

Centroid G 1:1:1

Incenter I a : b : c

IA −a : b : c
Excenters IB a : −b : c

IC a : b : −c
Gergonne point L (s− b)(s− c) : (s− c)(s− a) : (s− a)(s− b)
Nagel point N s− a : s− b : s− c

Symmedian point K a2 : b2 : c2

KA −a2 : b2 : c2

Exsymmedian points KB a2 : −b2 : c2

KC a2 : b2 : −c2

Circumcenter O a2(b2 + c2 − a2) : b2(c2 + a2 − b2) : c2(a2 + b2 − c2)

Orthocenter H (a2 + b2 − c2)(c2 + a2 − b2)
: (b2 + c2 − a2)(a2 + b2 − c2)
: (c2 + a2 − b2)(b2 + c2 − a2)

5. Show that the incenter I, the centroid G, and the Nagel point N are
collinear. Furthermore, IG : GN = 1 : 2.

G

N

I

CB

A

IG : GN = 1 : 2.

6. Find the barycentric coordinates of the incenter of 4O1O2O3.
7

7Solution. 1
4s
[(b+ c)A+ (c+ a)B + (a+ b)C] = 3

2
M − 1

2
I.
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7. The Gergonne point of the triangle KAKBKC is the symmedian point
K of 4ABC.

8. Characterize the triangles of which the midpoints of the altitudes are
collinear. 8

9. Show that the mirror image of the orthocenter H in a side of a triangle
lies on the circumcircle.

10. Let P be a point in the plane of 4ABC, GA, GB, GC respectively the
centroids of 4PBC, 4PCA and 4PAB. Show that AGA, BGB, and
CGC are concurrent.

9

11. If the sides of a triangle are in arithmetic progression, then the line
joining the centroid to the incenter is parallel to a side of the triangle.

12. If the squares of a triangle are in arithmetic progression, then the line
joining the centroid and the symmedian point is parallel to a side of
the triangle.

8.6.8

In §? we have established, using the trigonometric version of Ceva theorem,
the concurrency of the lines joining each vertex of a triangle to the point
of contact of the circumcircle with the mixtilinear incircle in that angle.
Suppose the line AA0, BB0, CC 0 intersects the sides BC, CA, AB at points
X , Y , Z respectively. We have

BX

XC
=
c

b
· sinα1

sinα2
=
(s− b)/b2
(s− c)/c2 .

BX : XC = s−b
b2 : s−c

c2 ,
AY : Y C = s−c

a2 : s−c
c2 ,

AZ : ZB = s−c
a2

s−b
b2 .

8More generally, if P is a point with nonzero homogeneous coordinates with respect to
4ABC, and AP , BP , CP cut the opposite sides at X, Y and Z respectively, then the
midpoints of AX, BY , CZ are never collinear. It follows that the orthocenter must be a
vertex of the triangle, and the triangle must be right. See MG1197.844.S854.

9At the centroid of A,B, C, P ; see MGQ781.914.
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These cevians therefore intersect at the point with homogeneous coordi-
nates

a2

s− a :
b2

s− b :
c2

s− c .
This is the isogonal conjugate of the point with homogeneous coordinates

s− a : s− b : s− c, the Nagel point.

8.6.9

The isogonal conjugate of the Nagel point is the external center of similitude
of the circumcircle and the incircle.

Exercise

1. Show that the isogonal conjugate of the Gergonne point is the internal
center of similitude of the circumcircle and the incircle.

8.7 Point with equal parallel intercepts

Given a triangle ABC, we locate the point P through which the parallels
to the sides of ABC make equal intercepts by the lines containing the sides
of ABC. 10 It is easy to see that these intercepts have lengths (1 − x)a,
(1− y)b, and (1− z)c respectively. For the equal - parallel - intercept point
P ,

1− x : 1− y : 1− z = 1

a
:
1

b
:
1

c
.

Note that

(1− x)A+ (1− y)B + (1− z)C = 3G− 2P.

This means that 3G − P = 2I 0, the isotomic conjugate of the incenter I.
From this, the points I 0, G, P are collinear and

I 0G : GP = 1 : 2.

10AMM E396. D.L. MacKay - C.C. Oursler.
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P I'G

A

B C

Exercise

1. Show that the triangles OII 0 andHNP are homothetic at the centroid
G. 11

2. Let P be a point with homogeneous coordinates x : y : z. Supose the
parallel through P to BC intersects AC at Y and AB at Z. Find the
homogeneous coordinates of the points Y and Z, and the length of the
segment Y Z. 12

P

CB

A

Z YP

CB

A

3. Make use of this to determine the homogeneous coordinates of the
equal - parallel - intercept point 13 of triangle ABC and show that the
equal parallel intercepts have a common length

=
2abc

ab+ bc+ ca
.

4. Let K be a point with homogeneous coordinates p : q : r with respect
to triangle ABC, X , Y , Z the traces of K on the sides of the triangle.

11The centroid G divides each of the segments OH, IN , and I 0P in the ratio 1 : 2.
12Y and Z are respectively the points x : 0 : y + z and x : y + z : 0. The segment Y Z

has length a(y+z)
x+y+z

.
13x : y : z = − 1

a
+ 1

b
+ 1

c
: 1
a
− 1

b
+ 1

c
: 1
a
+ 1

b
− 1

c
.
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If the triangle ABC is completed into parallelograms ABA0C, BCB0A,
and CAC 0B, then the lines A0X , B0Y , and C 0Z are concurrent at the
point Q with homogeneous coordinates 14

−1
p
+
1

q
+
1

r
:
1

p
− 1
q
+
1

r
:
1

p
+
1

q
− 1
r
.

14The trace of K on the line BC is the point X with homogeneous coordinates 0 : q : r.
If the triangle ABC is completed into a parallelogram ABA0C, the fourth vertex A0 is
the point −1 : 1 : 1. The line A0X has equation (q − r)x− ry + qz = 0; similarly for the
lines B0Y and C0Z. From this it is straightforward to verify that these three lines are
concurrent at the given point.
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8.8 Area formula

If P , Q and R are respectively the points

P = x1A+ y1B + z1C, Q = x2A+ y2B + z2C, R = x3A+ y3B + z3C,

then the area of triangle PQR is given by

4PQR =
¯̄̄̄x1 y1 z1

x2 y2 z2

x3 y3 z3

¯̄̄̄
4.

Exercise

1. Let X, Y , and Z be points on BC, CA, and AB respectively such
that

BX : XC = λ : λ0, CY : Y A = µ : µ0, AZ : ZB = ν : ν0.

The area of triangle XY Z is given by 15

4XY Z = λµν + λ0µ0ν0

(λ+ λ0)(µ+ µ0)(ν + ν0)
.

2. Deduce that the points X, Y , Z are collinear if and only if λµν =
−λ0µ0ν0.

3. If X 0, Y 0, Z 0 are isotomic conjugates of X , Y , Z on their respective
sides, show that the areas of the triangles XY Z and X 0Y 0Z 0 are equal.

15Proof. These have barycentric coordinates

X =
λ0

λ+ λ0
B +

λ

λ+ λ0
C, Y =

µ0

µ+ µ0
C +

µ

µ+ µ0
A, Z =

ν0

ν + ν0
A+

ν

ν + ν0
B.

By the preceding exercise,

4XY Z =
1

(λ+ λ0)(µ+ µ0)(ν + ν0)

¯̄̄̄ 0 λ0 λ
µ 0 µ0

ν0 ν 0

¯̄̄̄
=

λµν + λ0µ0ν0

(λ+ λ0)(µ+ µ0)(ν + ν0)
.
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8.9 Routh’s Theorem

8.9.1 Intersection of two cevians

Let Y and Z be points on the lines CA and AB respectively such that
CY : Y A = µ : µ0 and AZ : ZB = ν : ν0. The lines BY and CZ intersect at
the point P with homogeneous coordinates µν0 : µν : µ0ν0:

P =
1

µν + µ0ν 0 + µν 0
(µν 0A+ µνB + µ0ν0C).

8.9.2 Theorem

Let X , Y and Z be points on the lines BC, CA and AB respectively such
that

BX : XC = λ : λ0, CY : Y A = µ : µ0, AZ : ZB = ν : ν 0.

The lines AX, BY and CZ bound a triangle of area

(λµν − λ0µ0ν 0)2
(λµ+ λ0µ0 + λµ0)(µν + µ0ν 0 + µν 0)(νλ+ ν0λ0 + νλ0)

4.

Exercise

1. In each of the following cases, BX : XC = λ : 1, CY : Y A = µ : 1,
and AZ : ZB = ν : 1. Find 40

4 .

λ µ ν λµν − 1 λµ+ λ+ 1 µν + µ+ 1 νλ+ ν + 1 40
4

1 1 2

1 1 4

1 2 3

1 4 7

2 2 2

3 6 7

2. The cevians AX, BY , CZ are such that BX : XC = CY : Y A =
AZ : ZB = λ : 1. Find λ such that the area of the triangle intercepted
by the three cevians AX , BY , CZ is 1

7 of 4ABC.
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3. The cevians AD, BE, CF intersect at P . Show that 16

[DEF ]

[ABC]
= 2

PD

PA
· PE
PB

· PF
PC

.

4. The cevians AD, BE, and CF of triangle ABC intersect at P . If the
areas of the triangles BDP , CEP , and AFP are equal, show that P
is the centroid of triangle ABC.

8.10 Distance formula in barycentric coordinates

8.10.1 Theorem

The distance between two points P = xA+yB+zC and Q = uA+vB+wC
is given by

PQ2 =
1

2
[(x−u)2(b2+c2−a2)+(y−v)2(c2+a2−b2)+(z−w)2(a2+b2−c2)].

Proof. It is enough to assume Q = C. The distances from P to the sides
BC and CA are respectively PP1 = 24· xa and PP2 = 24· yb . By the cosine
formula,

P1P
2
2 = PP 2

1 + PP
2
2 + 2 · PP1 · PP2 · cos γ

= 442[(
x

a
)2 + (

y

b
)2 + xy · a

2 + b2 − c2
a2b2

]

= 442{(x
a
)2 + (

y

b
)2 +

1

2
[(1− z)2 − x2 − y2] · (a2 + b2 − c2)}

=
242

a2b2
[x2(b2 + c2 − a2) + y2(c2 + a2 − b2) + (z − 1)2(a2 + b2 − c2)].

It follows that CP = P1P2
sin γ =

ab·P1P2
24 is given by

CP 2 =
1

2
[x2(b2 + c2 − a2) + y2(c2 + a2 − b2) + (z − 1)2(a2 + b2 − c2)].

The general formula follows by replacing x, y, z − 1 by x− u, y − v, z − w
respectively.

16Crux 2161.



Chapter 9

Circles inscribed in a triangle

9.1

Given a triangle ABC, to locate a point P on the side BC so that the
incircles of triangles ABP and ACP have equal radii.

H K

I' 'I '

P CB

A

9.1.1 Analysis

Suppose BP : PC = k : 1 − k, and denote the length of AP by x. By
Stewart’s Theorem,

x2 = kb2 + (1− k)c2 − k(1− k)a2.

Equating the inradii of the triangles ABP and ACP , we have

2k4
c+ x+ ka

=
2(1− k)4

b+ x+ (1− k)a.

127
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This latter equation can be rewritten as

c+ x+ ka

k
=
b+ x+ (1− k)a

1− k , (9.1)

or
c+ x

k
=
b+ x

1− k , (9.2)

from which

k =
x+ c

2x+ b+ c
.

Now substitution into (1) gives

x2(2x+ b+ c)2 = (2x+ b+ c)[(x+ c)b2 + (x+ b)c2]− (x+ b)(x+ c)a2.

Rearranging, we have

(x+ b)(x+ c)a2 = (2x+ b+ c)[(x+ c)b2 + (x+ b)c2 − x2[(x+ b) + (x+ c)]]
= (2x+ b+ c)[(x+ b)(c2 − x2) + (x+ c)(b2 − x2)]
= (2x+ b+ c)(x+ b)(x+ c)[(c− x) + (b− x)]
= (2x+ b+ c)(x+ b)(x+ c)[(b+ c)− 2x]
= (x+ b)(x+ c)[(b+ c)2 − 4x2].

From this,

x2 =
1

4
((b+ c)2 − a2) =

1

4
(b+ c+ a)(b+ c− a) = s(s− a).

9.1.2

Lau 1 has proved an interesting formula which leads to a simple construction
of the point P . If the angle between the median AD and the angle bisector
AX is θ, then

ma · wa · cos θ = s(s− a).

1Solution to Crux 1097.
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é ma

wa

b
c

PDX CB

A

Y

D
X

C
B

A

This means if the perpendicular from X to AD is extended to intersect
the circle with diameter AD at a point Y , then AY =

p
s(s− a). Now,

the circle A(Y ) intersects the side BC at two points, one of which is the
required point P .

9.1.3 An alternative construction of the point P

Let X and Y be the projections of the incenter I and the excenter IA on the
side AB. Construct the circle with XY as diameter, and then the tangents
from A to this circle. P is the point on BC such that AP has the same
length as these tangents.

P

X I

Y

B

A

C
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Exercise

1. Show that

r0 =
s−ps(s− a)

a
· r.

2. Show that the circle with XY as diameter intersects BC at P if and
only if 4ABC is isosceles. 2

9.1.4 Proof of Lau’s formula

Let θ be the angle between the median and the bisector of angle A.
Complete the triangle ABC into a parallelogram ABA0C. In triangle

AA0C, we have

AA0 = 2ma, AC = b, A0C = c;
6 ACA0 = 180◦ − α, 6 AA0C = α

2 + θ,
6 A0AC = α

2 − θ.

é

p

A '

D CB

A

By the sine formula,

b+ c

2ma
=
sin(α2 + θ) + sin(

α
2 − θ)

sin(180◦ − α) =
2 sin α2 cos θ

sinα
=
cos θ

cos α2
.

From this it follows that

ma · cos θ = b+ c

2
· cos α

2
.

2Hint: AP is tangent to the circle XY P .
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Now, since wa =
2bc
b+c cos

α
2 , we have

ma · wa · cos θ = bc cos2 α
2
= s(s− a).

This proves Lau’s formula.

9.1.5

Here, we make an interesting observation which leads to a simpler construc-
tion of P , bypassing the calculations, and leading to a stronger result: (3)
remains valid if instead of inradii, we equate the exradii of the same two
subtriangles on the sides BP and CP . Thus, the two subtriangles have
equal inradii if and only if they have equal exradii on the sides BP and CP .

P

A

B C

Let θ = 6 APB so that 6 APC = 180◦− θ. If we denote the inradii by r0
and the exradii by ρ, then

r0

ρ
= tan

β

2
tan

θ

2
= tan(90◦ − θ

2
) tan

γ

2
.

Since tan θ2 tan(90
◦ − θ

2) = 1, we also haveµ
r0

ρ

¶2

= tan
β

2
tan

γ

2
.

This in turn leads to

tan
θ

2
=

vuut tan γ2
tan β2

.
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In terms of the sides of triangle ABC, we have

tan
θ

2
=

s
s− b
s− c =

p
(s− b)(s− c)
s− c =

√
BX ·XC
XC

.

This leads to the following construction of the point P .
Let the incircle of 4ABC touch the side BC at X .
Construct a semicircle with BC as diameter to intersect the perpendic-

ular to BC through X at Y .
Mark a point Q on the line BC such that AQ//Y C.
The intersection of the perpendicular bisector of AQ with the side BC

is the point P required.

P Q

Y

X CB

A

Exercise

1. Let ABC be an isosceles triangle with AB = BC. F is the midpoint
of AB, and the side BA is extended to a point K with AK = 1

2AC.
The perpendicular through A to AB intersects the circle F (K) at a
point Q. P is the point on BC (the one closer to B if there are two)
such that AP = AQ. Show that the inradii of triangles ABP and
ACP are equal.
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P

Q

K

F

C

A

B

2. Given triangle ABC, let P0, P1, P2, . . . , Pn be points on BC such
that P0 = B, Pn = C and the inradii of the subtriangles APk−1Pk,
k = 1, . . . , n, are all equal. For k = 1, 2, . . . , n, denote 6 APkPk−1 = θk.
Show that tan θk2 , k = 1, . . . , n− 1 are n− 1 geometric means between
cot β2 and tan

γ
2 , i.e.,

1

tan β2
, tan

θ1

2
, tan

θ2

2
, . . . tan

θn−1

2
, tan

γ

2

form a geometric progression.

3. Let P be a point on the side BC of triangle ABC such that the excircle
of triangle ABP on the side BP and the incircle of triangle ACP have
the same radius. Show that 3

BP : PC = −a+ b+ 3c : a+ 3b+ c,

and

AP =
(b+ c)2 − a(s− c)

2(b+ c)
.

3If BP : PC = k : 1− k, and AP = x, then
k

c+ x− ka =
(1− k)

b+ x+ (1− k)a.

Also, by Stewart’s Theorem x2 = kb2 + (1− k)c2 − k(1− k)a2.



YIU: Euclidean Geometry 134

P

A

B C

4. Let ABC be an isosceles triangle, D the midpoint of the base BC.
On the minor arc BC of the circle A(B), mark a point X such that
CX = CD. Let Y be the projection of X on the side AC. Let P be a
point on BC such that AP = AY . Show that the inradius of triangle
ABP is equal to the exradius of triangle ACP on the side CP .

P 'P

Y

X

DB

C

A
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9.2

Given a triangle, to construct three circles through a common point, each
tangent to two sides of the triangle, such that the 6 points of contact are
concyclic.

G

CB

A

Let G be the common point of the circles, and X2, X3 on the side BC,
Y1, Y3 on CA, and Z1, Z2 on AB, the points of contact.

9.2.1 Analysis 4

Consider the circle through the 6 points of contact. The line joining the
center to each vertex is the bisector of the angle at that vertex. This center
is indeed the incenter I of the triangle. It follows that the segments X2X3,
Y3Y1, and Z1Z2 are all equal in length. Denote by X , Y , Z the projections
of I on the sides. Then XX2 = XX3. Also,

AZ2 = AZ1 + Z1Z2 = AY1 + Y1Y3 = AY3.

This means that X and A are both on the radical axis of the circles (K2)

and (K3). The line AX is the radical axis. Similarly, the line
BY
CZ

is the

radical axis of the pair of circles
(K3) (K1)
(K1) )K2)

. The common point G of the

circles, being the intersection of AX , BY , and CZ, is the Gergonne point
of the triangle.

4Thébault - Eves, AMM E457.
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Z1

Y1

K1

G

X

Y

Z

I

CB

A

The center K1 is the intersection of the segment AI and the parallel
through G to the radius XI of the incircle.

The other two centers K2 and K3 can be similarly located.

9.3

Given a triangle, to construct three congruent circles through a common
point, each tangent to two sides of the triangle.

t

R

ITO

I1

I2 I3
T

CB

A

9.3.1 Analysis

Let I1, I2, I3 be the centers of the circles lying on the bisectors IA, IB, IC
respectively. Note that the lines I2I3 and BC are parallel; so are the pairs
I3I1, CA, and I1I2, AB. It follows that triangles I1I2I3 and ABC are per-
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spective from their common incenter I. The line joining their circumcenters
passes through I. Note that T is the circumcenter of triangle I1I2I3, the
circumradius being the common radius t of the three circles. This means
that T , O and I are collinear. Since

I3I1
CA

=
I1I2
AB

=
I2I3
BC

=
r − t
r
,

we have t = r−t
r ·R, or

t

R
=

r

R+ r
.

This means I divides the segment OT in the ratio

TI : IO = −r : R+ r.

Equivalently, OT : TI = R : r, and T is the internal center of similitude of
the circumcircle and the incircle.

9.3.2 Construction

Let O and I be the circumcenter and the incenter of triangle ABC.
(1) Construct the perpendicular from I to BC, intersecting the latter at

X .
(2) Construct the perpendicular from O to BC, intersecting the circum-

circle at M (so that IX and OM are directly parallel).
(3) Join OX and IM . Through their intersection P draw a line par-

allel to IX , intersecting OI at T , the internal center of similitude of the
circumcircle and incircle.

(4) Construct the circle T (P ) to intersect the segments IA, IB, IC at
I1, I2, I3 respectively.

(5) The circles Ij(T ), j = 1, 2, 3 are three equal circles through T each
tangent to two sides of the triangle.
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I2

I3

I1

T

P

M

O

X

I

CB

A

9.4

9.4.1 Proposition

Let I be the incenter of 4ABC, and I1, I2, I3 the incenters of the triangles
IBC, ICA, and IAB respectively. Extend II1 beyond I1 to intersect BC
at A0, and similarly II2 beyond I2 to intersect CA at B0, II3 beyond I3
to intersect AB at C 0. Then, the lines AA0, BB0, CC 0 are concurrent at a
point 5 with homogeneous barycentric coordinates

a sec
α

2
: b sec

β

2
: c sec

γ

2
.

Proof. The angles of triangle IBC are

π − 1
2
(β + γ),

β

2
,

γ

2
.

The homogeneous coordinates of I1 with respect to IBC are

cos
α

2
: sin

β

2
: sin

γ

2
.

5This point apparently does not appear in Kimberling’s list.
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Since I = 1
2s(a ·A+ b ·B + c ·C), the homongeneous coordinates of I1 with

respect to ABC are

a cos
α

2
: b cos

α

2
+ 2s sin

β

2
: c cos

α

2
+ 2s sin

γ

2

= a : b(1 + 2 cos
γ

2
) : c(1 + 2 cos

β

2
).

Here, we have made use of the sine formula:

a

sinα
=

b

sinβ
=

c

sin γ
=

2s

sinα+ sinβ + sin γ
=

2s

4 cos α2 cos
β
2 cos

γ
2

.

Since I has homogeneous coordinates a : b : c, it is easy to see that the line
II1 intersects BC at the point A

0 with homogeneous coordinates

0 : b cos
γ

2
: c cos

β

2
= 0 : b sec

β

2
: c sec

γ

2
.

Similarly, B0 and C 0 have coordinates

A0 0 : b sec
β

2
: c sec

γ

2
,

B0 a sec
α

2
: 0 : c sec

γ

2
,

C 0 a sec
α

2
: b sec

β

2
: 0.

From these, it is clear that AA0, BB0, CC 0 intersect at a point with
homogeneous coordinates

a sec
α

2
: b sec

β

2
: c sec

γ

2
.

Exercise

1. Let O1, O2, O3 be the circumcenters of triangles I1BC, I2CA, I3AB
respectively. Are the lines O1I1, O2I2, O3I3 concurrent?

9.5 Malfatti circles

9.5.1 Construction Problem

Given a triangle, to construct three circles mutually tangent to each other,
each touching two sides of the triangle.
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Construction

Let I be the incenter of triangle ABC.
(1) Construct the incircles of the subtriangles IBC, ICA, and IAB.
(2) Construct the external common tangents of each pair of these incir-

cles. (The incircles of ICA and IAB have IA as a common tangent. Label
the other common tangent Y1Z1 with Y1 on CA and Z1 on AB respectively.
Likewise the common tangent of the incircles of IAB and IBC is Z2X2 with
Z2 on AB and X2 on BC, and that of the incircles of IBC and ICA is X3Y3

with X3 on BC and Y3 on CA.) These common tangents intersect at a point
P .

(3) The incircles of triangles AY1Z1, BZ2X2, and CX3Y3 are the required
Malfatti circles.

F

E

D

I'
Z '

Z2

X2

Z1

X 'B '

X3

Y3

Y1

Y '

C '

A '

A

B C

Exercise

1. Three circles of radii r1, r2, r3 are mutually tangent to each other.
Find the lengths of the sides of the triangle bounded by their external
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common tangents. 6

9.6

9.6.1

Given a circle K(a) tangent to O(R) at A, and a point B, to construct a
circle K 0(b) tangent externally to K(a) and internally to (O) at B.

K'

P
B

K

A

O

Construction

Extend OB to P such that BP = a. Construct the perpendicular bisector
of KP to intersect OB at K0, the center of the required circle.

9.6.2

Two circles H(a) and K(b) are tangent externally to each other, and inter-
nally to a third, larger circle O(R), at A and B respectively.

AB = 2R

s
a

R− a ·
b

R− b .
6Crux 618.

a =
r

r − r2
(
√
r2r3 −√r3r1 +

√
r1r2) +

r

r − r3
(
√
r2r3 +

√
r3r1 −√r1r2)

where

r =

√
r1 +

√
r2 +

√
r3 +

√
r1 + r2 + r3√

r2r3 +
√
r3r1 +

√
r1r2

·√r1r2r3.
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Proof. Let 6 AOB = θ. Applying the cosine formula to triangle AOB,

AB2 = R2 +R2 − 2R2 cos θ,

where

cos θ =
(R− a)2 + (R− b)2 − (a+ b)2

2(R− a)(R− b) ,

by applying the cosine formula again, to triangle OHK.

Exercise

1. Given a circle K(A) tangent externally to O(A), and a point B on
O(A), construct a circle tangent to O(A) at B and to K(A) externally
(respectively internally).

2. Two circles H(a) and K(b) are tangent externally to each other, and
also externally to a third, larger circle O(R), at A and B respectively.
Show that

AB = 2R

s
a

R+ a
· b

R+ b
.

9.6.3

Let H(a) and K(b) be two circles tangent internally to O(R) at A and B
respectively. If (P ) is a circle tangent internally to (O) at C, and externally
to each of (H) and (K), then

AC : BC =

r
a

R− a :
s

b

R− b .

Proof. The lengths of AC and BC are given by

AC = 2R

s
ac

(R− a)(R− c) , BC = 2R

s
bc

(R− b)(R− c) .

Construction of the point C

(1) On the segment AB mark a point X such that the cevians AK, BH,
and OX intersect. By Ceva theorem,

AX : XB =
a

R− a :
b

R− b .
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(2) Construct a circle with AB as diameter. Let the perpendicular
through X to AB intersect this circle at Q and Q0. Let the bisectors angle
AQB intersect the line AB at Y .

Note that AQ2 = AX · AB and BQ2 = XB · AB. Also, AY : Y B =
AQ : QB. It follows that

AY : Y B =

r
a

R− a :
s

b

R− b .

(3) Construct the circle through Q, Y , Q0 to intersect (O) at C and C 0.
Then C and C 0 are the points of contact of the circles with (O), (H),

and (K). Their centers can be located by the method above.

Q '

Y

Q
X X
K KB

H

B

H

A

O

A

O

9.6.4

Given three points A, B, C on a circle (O), to locate a point D such that
there is a chain of 4 circles tangent to (O) internally at the points A, B, C,
D.

Bisect angle ABC to intersect AC at E and the circle (O) at X . Let
Y be the point diametrically opposite to X . The required point D is the
intersection of the line Y E and the circle (O).
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D

A

C

B

D

Y

E

X

A

C

B

Beginning with any circle K(A) tangent internally to O(A), a chain of
four circles can be completed to touch (O) at each of the four points A, B,
C, D.

Exercise

1. Let A,B,C,D,E,F be six consecutive points on a circle. Show that
the chords AD, BE, CF are concurrent if and only if AB ·CD ·EF =
BC ·DE · FA.

F

C

E

B

D

A

A 8

A 6

A 10

A 12

A 4

A 2

A 9
A 11

A 1A 7

A 5 A 3

2. Let A1A2 . . . A12 be a regular 12− gon. Show that the diagonals
A1A5, A3A6 and A4A8 are concurrent.

3. Inside a given circle C is a chain of six circles Ci, i = 1, 2, 3, 4, 5, 6,
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such that each Ci touches Ci−1 and Ci+1 externally. (Remark: C7 = C1).
Suppose each Ci also touches C internally at Ai, i = 1, 2, 3, 4, 5, 6.
Show that A1A4, A2A5 and A3A6 are concurrent.

7

A4

A 3

A 2

A 5

A 1

A 6

7Rabinowitz, The seven circle theorem, Pi Mu Epsilon Journal, vol 8, no. 7 (1987)
pp.441 — 449. The statement is still valid if each of the circles Ci, i = 1, 2, 3, 4, 5, 6, is
outside the circle C.



Chapter 10

Quadrilaterals

10.1 Area formula

Consider a quadrilateral ABCD with sides

AB = a, BC = b, CD = c, DA = d,

angles

6 DAB = α, 6 ABC = β, 6 BCD = γ, 6 CDA = δ,

and diagonals
AC = x, BD = y.

�

Å
Ñ

~

y xd

c

b

a

D C

B

A

Applying the cosine formula to triangles ABC and ADC, we have

x2 = a2 + b2 − 2ab cosβ,

146
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x2 = c2 + d2 − 2cd cos δ.

Eliminating x, we have

a2 + b2 − c2 − d2 = 2ab cosβ − 2cd cos δ,

Denote by S the area of the quadrilateral. Clearly,

S =
1

2
ab sinβ +

1

2
cd sin δ.

Combining these two equations, we have

16S2 + (a2 + b2 − c2 − d2)2

= 4(ab sinβ + cd sin δ)2 + 4(ab cosβ − cd cos δ)2
= 4(a2b2 + c2d2)− 8abcd(cosβ cos δ − sinβ sin δ)
= 4(a2b2 + c2d2)− 8abcd cos(β + δ)
= 4(a2b2 + c2d2)− 8abcd[2 cos2 β + δ

2
− 1]

= 4(ab+ cd)2 − 16abcd cos2 β + δ
2

.

Consequently,

16S2 = 4(ab+ cd)2 − (a2 + b2 − c2 − d2)2 − 16abcd cos2 β + δ
2

= [2(ab+ cd) + (a2 + b2 − c2 − d2)][2(ab+ cd)− (a2 + b2 − c2 − d2)]

−16abcd cos2 β + δ
2

= [(a+ b)2 − (c− d)2][(c+ d)2 − (a− b)2]− 16abcd cos2 β + δ
2

= (a+ b+ c− d)(a+ b− c+ d)(c+ d+ a− b)(c+ d− a+ b)
−16abcd cos2 β + δ

2
.

Writing
2s := a+ b+ c+ d,

we reorganize this as

S2 = (s− a)(s− b)(s− c)(s− d)− abcd cos2 β + δ
2

.
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10.1.1 Cyclic quadrilateral

If the quadrilateral is cyclic, then β + δ = 180◦, and cos β+δ
2 = 0. The area

formula becomes

S =
q
(s− a)(s− b)(s− c)(s− d),

where s = 1
2(a+ b+ c+ d).

Exercise

1. If the lengths of the sides of a quadrilateral are fixed, its area is greatest
when the quadrilateral is cyclic.

2. Show that the Heron formula for the area of a triangle is a special case
of this formula.

10.2 Ptolemy’s Theorem

Suppose the quadrilateral ABCD is cyclic. Then, β+δ = 180◦, and cosβ =
− cos δ. It follows that

a2 + b2 − x2

2ab
+
c2 + d2 − x2

2cd
= 0,

and

x2 =
(ac+ bd)(ad+ bc)

ab+ cd
.

Similarly, the other diagonal y is given by

y2 =
(ab+ cd)(ac+ bd)

(ad+ bc)
.

From these, we obtain
xy = ac+ bd.

This is Ptolemy’s Theorem. We give a synthetic proof of the theorem and
its converse.
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10.2.1 Ptolemy’s Theorem

A convex quadrilateral ABCD is cyclic if and only if

AB · CD +AD ·BC = AC ·BD.

Proof. (Necessity) Assume, without loss of generality, that 6 BAD > 6 ABD.
Choose a point P on the diagonal BD such that 6 BAP = 6 CAD. Trian-
gles BAP and CAD are similar, since 6 ABP = 6 ACD. It follows that
AB : AC = BP : CD, and

AB · CD = AC ·BP.

Now, triangles ABC and APD are also similar, since 6 BAC = 6 BAP +
6 PAC = 6 DAC + 6 PAC = 6 PAD, and 6 ACB = 6 ADP . It follows that
AC : BC = AD : PD, and

BC · AD = AC · PD.

Combining the two equations, we have

AB · CD +BC ·AD = AC(BP + PD) = AC ·BD.
A

D

C

P '

B

P

C

D

A

O

B

(Sufficiency). Let ABCD be a quadrilateral satisfying (**). Locate a
point P 0 such that 6 BAP 0 = 6 CAD and 6 ABP 0 = 6 ACD. Then the
triangles ABP and ACD are similar. It follows that

AB : AP 0 : BP 0 = AC : AD : CD.

From this we conclude that
(i) AB · CD = AC ·BP 0, and
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(ii) triangles ABC and AP 0D are similar since 6 BAC = 6 P 0AD and
AB : AC = AP 0 : AD.

Consequently, AC : BC = AD : P 0D, and

AD ·BC = AC · P 0D.

Combining the two equations,

AC(BP 0 + P 0D) = AB cotCD +AD ·BC = AC ·BD.

It follows that BP 0 + P 0D = BC, and the point P 0 lies on diagonal BD.
From this, 6 ABD = 6 ABP 0 = 6 ACD, and the points A, B, C, D are
concyclic.

Exercise

1. Let P be a point on the minor arc BC of the circumcircle of an equi-
lateral triangle ABC. Show that AP = BP + CP .

P

CB

A

2. P is a point on the incircle of an equilateral triangle ABC. Show that
AP 2 +BP 2 + CP 2 is constant. 1

1If each side of the equilateral triangle has length 2a, then AP 2 +BP 2 + CP 2 = 5a2.
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P

CB

A

3. Each diagonal of a convex quadrilateral bisects one angle and trisects
the opposite angle. Determine the angles of the quadrilateral. 2

4. If three consecutive sides of a convex, cyclic quadrilateral have lengths
a, b, c, and the fourth side d is a diameter of the circumcircle, show
that d is the real root of the cubic equation

x3 − (a2 + b2 + c2)x− 2abc = 0.

5. One side of a cyclic quadrilateral is a diameter, and the other three
sides have lengths 3, 4, 5. Find the diameter of the circumcircle.

6. The radius R of the circle containing the quadrilateral is given by

R =
(ab+ cd)(ac+ bd)(ad+ bc)

4S
.

10.2.2

If ABCD is cyclic, then

tan
α

2
=

s
(s− a)(s− d)
(s− b)(s− c) .

Proof. In triangle ABD, we have AB = a, AD = d, and BD = y, where

y2 =
(ab+ cd)(ac+ bd)

ad+ bc
.

2Answer: Either A = D = 72◦, B = C = 108◦, or A = D = 720
7

◦
, B = C = 540

7

◦
.
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By the cosine formula,

cosα =
a2 + d2 − y2

2ad
=
a2 − b2 − c2 + d2

2(ad+ bc)
.

In an alternative form, this can be written as

tan2 α

2
=

1− cosα
1 + cosα

=
(b+ c)2 − (a− d)2
(a+ d)2 − (b− c)2

=
(−a+ b+ c+ d)(a+ b+ c− d)
(a− b+ c+ d)(a+ b− c+ d) =

(s− a)(s− d)
(s− b)(s− c) .

Exercise

1. Let Q denote an arbitrary convex quadrilateral inscribed in a fixed
circle, and let F(Q) be the set of inscribed convex quadrilaterals whose
sides are parallel to those of Q. Prove that the quadrilaterals in F(Q)
of maximum area is the one whose diagonals are perpendicular to one
another. 3

2. Let a, b, c, d be positive real numbers.

(a) Prove that a + b > |c − d| and c + d > |a − b| are necessary
and sufficient conditions for there to exist a convex quadrilateral that
admits a circumcircle and whose side lengths, in cyclic order, are a, b,
c, d.

(b) Find the radius of the circumcircle. 4

3. Determine the maximum area of the quadrilateral with consecutive
vertices A, B, C, and D if 6 A = α, BC = b and CD = c are given. 5

10.2.3 Construction of cyclic quadrilateral of given sides

10.2.4 The anticenter of a cyclic quadrilateral

Consider a cyclic quadrilateral ABCD, with circumcenter O. Let X , Y ,
Z, W be the midpoints of the sides AB, BC, CD, DA respectively. The
midpoint of XZ is the centroid G of the quadrilateral. Consider the per-
pendicular X to the opposite side CD. Denote by O0 the intersection of this

3MG1472.952. (E.Gr̈el)
4CMJ545.951.S961. (J.Fukuta)
5CMJ538.945.S955. (M.S.Klamkin)
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perpendicular with the lien OG. Since O0X//ZO and G is the midpoint of
XA, it is clear that O0G = GO.

O '

G

DC

B

A

O
O 'G

Z

X

DC

B

AO

It follows that the perpendiculars from the midpoints of the sides to
the opposite sides of a cyclic quadrilateral are concurrent at the point O0,
which is the symmetric of the circumcenter in the centroid. This is called
the anticenter of the cyclic quadrilateral.

10.2.5

Let P be the midpoint of the diagonal AC. Since AXPW is a parallelogram,
6 XPW = 6 XAW . Let X 0 and W 0 be the projections of the midpoints X
andW on their respective opposite sides. The lines XX 0 andWW 0 intersect
at O0. Clearly, O0, W 0, C, X 0 are concyclic. From this, we have

6 XO0W = 6 X 0O0W 0 = 180◦ − 6 X 0CW 0 = 6 XAW = 6 XPW.

W '

O '

P

X '

W

X

B

C D

O
A
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It follows that the four points P , X , W , and O0 are concyclic. Since P ,
X , W are the midpoints of the sides of triangle ABD, the circle through
them is the nine-point circle of triangle ABD. From this, we have

Proposition

The nine-point circles of the four triangles determined by the four vertices
of a cyclic quadrilateral pass through the anticenter of the quadrilateral.

10.2.6 Theorem

The incenters of the four triangles determined by the vertices of a cyclic
quadrilateral form a rectangle.

K

H

P

QR

D

S

A

B C

Proof.6 The lines AS and DP intersect at the midpoint H of the arc BC on
the other side of the circle ABCD. Note that P and S are both on the circle
H(B) = H(C). If K is the midpoint of the arc AD, then HK, being the
bisector of angle AHD, is the perpendicular bisector of PS. For the same
reason, it is also the perpendicular bisector of QR. It follows that PQRS is
an isosceles trapezium.

The same reasoning also shows that the chord joining the midpoints of
the arcs AB and CD is the common perpendicular bisector of PQ and RS.
From this, we conclude that PQRS is indeed a rectangle.

6Court, p.133.
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10.2.7 Corollary

The inradii of these triangles satisfy the relation 7

ra + rc = rb + rd.

Proof. If AB and CD are parallel, then each is parallel to HK. In this
case, ra = rb and rc = rd. More generally,

ra − rb = PQ sin 1
2
( 6 BDC − 6 AHD)

and

rd − rc = SR sin 1
2
(6 BAC − 6 AHD).

Since PQ = SR and 6 BDC = 6 BAC, it follows that ra− rb = rd − rc, and
ra + rc = rb + rd.

Exercise

1. Suppose the incircles of triangles
ABC
ACD

and
ABD
BCD

touch the diagonal

AC
BD

at
X
Y
respectively.

A

B C

X
D

YZ

W

Show that

XY = ZW =
1

2
|a− b+ c− d|.

7The proof given in Fukagawa and Pedoe, Japanese Temple Geometry Problems, p.127,
does not cover the case of a bicentric quadrilateral.



YIU: Euclidean Geometry 156

10.3 Circumscriptible quadrilaterals

A quadrilateral is said to be circumscriptible if it has an incircle.

10.3.1 Theorem

A quadrilateral is circumscriptible if and only if the two pairs of opposite
sides have equal total lengths.
Proof. (Necessity) Clear.

B Q

S

R
P

D

C

K Y

X

A

D

CB

A

(Sufficiency) Suppose AB + CD = BC + DA, and AB < AD. Then

BC < CD, and there are points
X
Y
on

AD
CD

such that
AX = AB
CY = CD

. Then

DX = DY . LetK be the circumcircle of triangle BXY . AK bisects angle A
since the triangles AKX and AKB are congruent. Similarly, CK and DK
are bisectors of angles B and C respectively. It follows that K is equidistant
from the sides of the quadrilateral. The quadrilateral admits of an incircle
with center K.

10.3.2 8

Let ABCD be a circumscriptible quadrilateral, X , Y , Z, W the points of
contact of the incircle with the sides. The diagonals of the quadrilaterals
ABCD and XY ZW intersect at the same point.

8See Crux 199. This problem has a long history, and usually proved using projective
geometry. Charles Trigg remarks that the Nov.-Dec. issue of Math. Magazine, 1962,
contains nine proofs of this theorem. The proof here was given by Joseph Konhauser.
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P

W

X

Y

Z

B

C

D

A

Furthermore, XY ZW is orthodiagonal if and only if ABCD is orthodi-
agonal.
Proof. We compare the areas of triangles APX and CPZ. This is clearly

4APX
4CPZ =

AP · PX
CP · PZ .

On the other hand, the angles PCZ and PAX are supplementary, since Y Z
and XW are tangents to the circle at the ends of the chord CA. It follows
that 4APX

4CPZ =
AP ·AX
CP · CZ .

From these, we have
PX

PZ
=
AX

CZ
.

This means that the point P divides the diagonal XZ in the ratio AX : CZ.
Now, let Q be the intersection of the diagonal XZ and the chord BD.

The same reasoning shows that Q divides XZ in the ratio BX : DZ. Since
BX = AX and DZ = CZ, we conclude that Q is indeed the same as P .

The diagonal XZ passes through the intersection of AC and BD. Like-
wise, so does the diagonal YW .

Exercise

1. The area of the circumscriptible quadrilateral is given by

S =
√
abcd · sin α+ γ

2
.
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In particular, if the quadrilateral is also cyclic, then

S =
√
abcd.

2. If a cyclic quadrilateral with sides a, b, c, d (in order) has area S =√
abcd, is it necessarily circumscriptible? 9

3. If the consecutive sides of a convex, cyclic and circumscriptible quadri-
lateral have lengths a, b, c, d, and d is a diameter of the circumcircle,
show that 10

(a+ c)b2 − 2(a2 + 4ac+ c2)b+ ac(a+ c) = 0.

4. Find the radius r0 of the circle with center I so that there is a quadri-
lateral whose vertices are on the circumcircle O(R) and whose sides
are tangent to I(r0).

5. Prove that the line joining the midpoints of the diagonals of a circum-
scriptible quadrilateral passes through the incenter of the quadrilat-
eral. 11

10.4 Orthodiagonal quadrilateral

10.4.1

A quadrilateral is orthodiagonal if its diagonals are perpendicular to each
other.

10.4.2

A quadrilateral is orthodiagonal if and only if the sum of squares on two
opposite sides is equal to the sum of squares on the remaining two opposite
sides.

9No, when the quadrilateral is a rectangle with unequal sides. Consider the following
three statements for a quadrilateral.
(a) The quadrilateral is cyclic.
(b) The quadrilateral is circumscriptible.
(c) The area of the quadrilateral is S =

√
abcd.

Apart from the exception noted above, any two of these together implies the third.
(Crux 777).

10Is it possible to find integers a and c so that b is also an integer?
11PME417.78S.S79S.(C.W.Dodge)
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Proof. Let K be the intersection of the diagonals, and 6 AKB = θ. By the
cosine formula,

AB2 = AK2 +BK2 − 2AK ·BK · cos θ,
CD2 = CK2 +DK2 − 2CK ·DK · cos θ;
BC2 = BK2 + CK2 + 2BK · CK · cos θ,
DA2 = DK2 +AK2 + 2DK ·AK · cos θ.

Now,

BC2+DA2−AB2−CD2 = 2cos θ(BK ·CK+DK ·AK+AK ·BK+CK ·DK)

It is clear that this is zero if and only if θ = 90◦.

Exercise

1. Let ABCD be a cyclic quadrilateral with circumcenter O. The quadri-
lateral is orthodiagonal if and only if the distance from O to each side
of the ABCD is half the length of the opposite side. 12

2. Let ABCD be a cyclic, orthodiagonal quadrilateral, whose diagonals
intersect at P . Show that the projections of P on the sides of ABCD
form the vertices of a bicentric quadrilateral, and that the circumcircle
also passes through the midpoints of the sides of ABCD. 13

10.5 Bicentric quadrilateral

A quadrilateral is bicentric if it has a circumcircle and an incircle.

10.5.1 Theorem

The circumradius R, the inradius r, and the the distance d between the cir-
cumcenter and the incenter of a bicentric quadrilateral satisfies the relation

1

r2
=

1

(R+ d)2
+

1

(R− d)2 .

The proof of this theorem is via the solution of a locus problem.

12Klamkin, Crux 1062. Court called this Brahmagupta’s Theorem.
13Crux 2209; also Crux 1866.
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10.5.2 Fuss problem

Given a point P inside a circle I(r), IP = c, to find the locus of the inter-
section of the tangents to the circle at X, Y with 6 XPY = 90◦.

M

O

K

Q
Y

X

PI

Solution 14

Let Q be the intersection of the tangents at X and Y , IQ = x, 6 PIQ = θ.
We first find a relation between x and θ.

Let M be the midpoint of XY . Since IXQ is a right triangle and
XM ⊥ IQ, we have IM · IQ = IX2, and

IM =
r2

x
.

Note that MK = c sin θ, and PK = IM − c cos θ = r2

x − c cos θ.
Since PK is perpendicular to the hypotenuse XY of the right triangle

PXY ,
PK2 = XK · Y K = r2 − IK2 = r2 − IM2 −MK2.

From this, we obtain

(
r2

x
− c cos θ)2 = r2 − r4

x2
− c2 sin2 θ,

14See §39 of Heinrich Dörrie, 100 Great Problems of Elemetary Mathematics, Dover,
1965.
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and, after rearrangement,

x2 + 2x · cr2

r2 − c2 · cos θ =
2r4

r2 − c2 .

Now, for any point Z on the left hand side with IZ = d, we have

ZQ2 = d2 + x2 + 2xd cos θ.

Fuss observed that this becomes constant by choosing

d =
cr2

r2 − c2 .

More precisely, if Z is the point O such that OI is given by this expression,
then OQ depends only on c and r:

OQ2 =
c2r4

(r2 − c2)2 +
2r4(r2 − c2)
(r2 − c2)2 =

r4(2r2 − c2)
(r2 − c2)2

This means that Q always lies on the circle, center O, radius R given by

R2 =
r4(2r2 − c2)
(r2 − c2)2 .

Proof of Theorem

By eliminating c, we obtain a relation connecting R, r and d. It is easy to
see that

R2 =
2r4(r2 − c2) + c2r4

(r2 − c2)2 =
2r4

r2 − c2 + d
2,

from which

R2 − d2 =
2r4

r2 − c2 .
On the other hand,

R2 + d2 =
r4(2r2 − c2)
(r2 − c2)2 +

c2r4

(r2 − c2)2 =
2r6

(r2 − c2)2 .

From these, we eliminate c and obtain

1

r2
=
2(R2 + d2)

(R2 − d2)2
=

1

(R+ d)2
+

1

(R− d)2 ,

relating the circumradius, the inradius, and the distance between the two
centers of a bicentric quadrilateral.



YIU: Euclidean Geometry 162

10.5.3 Construction problem

Given a point I inside a circle O(R), to construct a circle I(r) and a bicentric
quadrilateral with circumcircle (O) and incircle (I).

P

M

H KO I

Construction

If I and O coincide, the bicentric quadrilaterals are all squares, r = R√
2
. We

shall assume I and O distinct.
(1) Let HK be the diameter through I, IK < IH. Choose a point M

such that IM is perpendicular to IK, and IK = IM .
(2) Join H, M and construct the projection P of I on HM .
The circle I(P ) is the required incircle.

10.5.4 Lemma

Let Q be a cyclic quadrilateral. The quadrilateral bounded by the tangents
to circumcircle at the vertices is cyclic if and only if Q is orthodiagonal.
Proof. Given a cyclic quadrilateral quadrilateral XY ZW , let ABCD be
the quadrilateral bounded by the tangents to the circumcircle at X , Y , Z,
W . Since (α+ γ) + 2(θ + φ) = 360◦, it is clear that ABCD is cyclic if and
only if the diagonals XZ and YW are perpendicular.
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10.5.5 Proposition

(a) Let ABCD be a cyclic, orthodiagonal quadrilateral. The quadrilateral
XY ZW bounded by the tangents to the circumcircle at the vertices is bi-
centric.

Y

X

W

ZB

A

C

D

l

_

A

D

CY

X

Z

W

l

(b) Let ABCD be a bicentric quadrilateral. The quadrilateral XY ZW
formed by the points of contact with the incircle is orthodiagonal (and cir-
cumscriptible). Furthermore, the diagonals of XY ZW intersect at a point
on the line joining the circumcenter and the incenter of ABCD.

Exercise

1. The diagonals of a cyclic quadrilateral are perpendicular and intersect
at P . The projections of P on the sides form a bicentric quadrilateral,
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the circumcircle of which passes through the midpoints of the sides.
15

2. Characterize quadrilaterals which are simultaneously cyclic, circum-
scriptible, and orthodiagonal. 16

3. The diagonals of a bicentric quadrilateral intersect at P . Let HK be
the diameter of the circumcircle perpendicular to the diagonal AC (so
that B and H are on the same side of AC). If HK intersects AC at
M , show that BP : PD = HM :MK. 17

P

H

K

M

D

C

A

I

B

O

4. Given triangle ABC, construct a point D so that the convex quadri-
lateral ABCD is bicentric. 18

5. For a bicentric quadrilateral with diagonals p, q, circumradius R and
inradius r, 19

pq

4r2
− 4R

2

pq
= 1.

15Crux 2209.
16In cyclic order, the sides are of the form a, a, b, b. (CMJ 304.853; CMJ374.882.S895).
17D.J.Smeenk, Crux 2027.
18Let M be the midpoint of AC. Extend BO to N such that ON = OM . Construct

the circle with diameter BN to intersect AC. The one closer to the shorter side of AB
and BC is P . Extend BP to intersect the circumcircle of ABC at D.

19Crux 1376; also Crux 1203.



YIU: Euclidean Geometry 165

10.5.6

The circumcenter, the incenter, and the intersection of the diagonals of a
bicentric quadrilateral are concurrent.

10.6

Consider a convex quadrilateral ABCD whose diagonals AC and BD inter-
sect at K. Let A0, B0, C 0, D0 be the projections of K on the sides AB, BC,
CD, DA respectively.

C '
A '

B '

D '

K

D

CB

A

10.6.1 Theorem 20

The quadrilateral ABCD has a circumcircle if and only if A0B0C 0D0 has an
incircle.

A '

D '

B '

C '

PD

A

C

B

We prove this in two separate propositions.

20Crux 2149, Romero Márquez.
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Proposition A.

Let ABCD be a cyclic quadrilateral, whose diagonals intersect at K. The
projections of K on the sides of ABCD form the vertices of a circum-
scriptible quadrilateral.
Proof. Note that the quadrilateralsKA0AB0,KB0BC 0,KC 0CD0, andKD0DA0

are all cyclic. Suppose ABCD is cyclic. Then

6 KA0D0 = 6 KAD0 = 6 CAD = 6 CBD = 6 B0BK = 6 B0A0K.

This means K lies on the bisector of angle D0A0B0. The same reasoning
shows that K also lies on the bisectors of each of the angles B0, C 0, D0.
From this, A0B0C 0D0 has an incircle with center K.

Proposition B.

Let ABCD be a circumscriptible quadrilateral, with incenter O. The per-
pendiculars to OA at A, OB at B, OC at C, and OD at D bound a cyclic
quadrilateral whose diagonals intersect at O.

B '

C '

D '

A '

B

D

C

O

A

Proof. The quadrilaterals OAB0B, OBC 0C, OCD0D, and ODA0A are all
cyclic. Note that

6 DOD0 = 6 DCD0 = 6 BCC 0
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since OC ⊥ C 0D0. Similarly, 6 AOB0 = 6 CBC 0. It follows that

6 DOD0 + 6 AOD + 6 AOB = 6

10.6.2

Squares are erected outwardly on the sides of a quadrilateral.
The centers of these squares form a quadrilateral whose diagonals are

equal and perpendicular to each other. 21

10.7 Centroids

The centroid G0 is the center of
The edge-centroid G1

The face-centroid G2:

10.8

10.8.1

A convex quadrilateral is circumscribed about a circle. Show that there
exists a straight line segment with ends on opposite sides dividing both the
permieter and the area into two equal parts. Show that the straight line
passes through the center of the incircle. Consider the converse.

22

10.8.2

Draw a straight line which will bisect both the area and the perimeter of a
given convex quadrilateral. 23

10.9

Consider a quadrilateral ABCD, and the quadrilateral formed by the various
centers of the four triangles formed by three of the vertices.

21Crux 1179.
22AMM3878.38?.S406. (V.Thébault). See editorial comment on 837.p486.
23E992.51?.S52?,531.(K.Tan)
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10.9.1

(a) If Q is cyclic, then Q(O) is circumscriptible.
(b) If Q is circumscriptible, then Q(O) is cyclic.

24

(c) If Q is cyclic, then Q(I) is a rectangle.
(d) If Q, is cyclic, then the nine-point circles of BCD, CDA, DAB, ABC

have a point in common. 25.

Exercise

1. Prove that the four triangles of the complete quadrangle formed by
the circumcenters of the four triangles of any complete quadrilateral
are similar to those triangles. 26

2. Let P be a quadrilateral inscribed in a circle (O) and let Q be the
quadrilateral formed by the centers of the four circles internally touch-
ing (O) and each of the two diagonals of P . Then the incenters of the
four triangles having for sides the sides and diagonals of P form a
rectangle inscribed in Q. 27

10.10

10.10.1

The diagonals of a quadrilateral ABCD intersect at P . The orthocenters of
the triangle PAB, PBC, PCD, PDA form a parallelogram that is similar
to the figure formed by the centroids of these triangles. What is “centroids”
is replaced by circumcenters? 28

24E1055.532.S538.(V.Thébault)
25Crux 2276
26E619.444.S451. (W.B.Clarke)
27Thébault, AMM 3887.38.S837. See editorial comment on 837.p486.
28Crux 1820.
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10.11 Quadrilateral formed by the projections of
the intersection of diagonals

10.11.1

The diagonal of a convex quadrilateral ABCD intersect at K. P , Q, R, S
are the projections of K on the sides AB, BC, CD, and DA. Prove that
ABCD is cyclic if PQRS is circumscriptible. 29

10.11.2

The diagonals of a convex quadrilateral ABCD intersect at K. P , Q, R, S
are the projections of K on the sides AB, BC, CD, and DA. Prove that if
KP = KR and KQ = KS, then ABCD is a parallelogram. 30

10.12 The quadrilateral Q
0
(center)

10.12.1

If Q0(I) is cyclic, then Q is circumscriptible. 31

10.12.2 The Newton line of a quadrilateral

L and M are the midpoints of the diagonals AC and BD of a quadrilateral
ABCD. The lines AB, CD intersect at E, and the lines AD, BC intersect
at F . Let N be the midpoint of EF .

Then the points L, M , N are collinear.
Proof. Let P , Q, R be the midpoints of the segments AE, AD, DE respec-
tively. Then L, M , N are on the lines PQ, QR, RP respectively. Apply the
Menelaus theorem to the transversal BCF of 4EAD.

29Crux 2149.
30W.Pompe, Crux 2257.
31Seimiya, Crux 2338.
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Exercise

1. 32 Suppose ABCD is a plane quadrilateral with no two sides parallel.
Let AB and CD intersects at E and AD,BC intersect at F . IfM,N,P
are the midpoints of AC,BD,EF respectively, and AE = a·AB,AF =
b · AD, where a and b are nonzero real numbers, prove that MP =
ab ·MN .

2. 33 The Gauss-Newton line of the complete quadrilateral formed by the
four Feuerbach tangents of a triangle is the Euler line of the triangle.

32AMM E3299.8810.
33AMM 4549.537.S549. (R.Obláth).


