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Preface

PoOPULAR interest in mathematics is unquestionably increasing.
Perhaps this is because of the fact that mathematics is a tool with-
out which the applied sciences would cease to be sciences. On the
other hand, the abstract aspect of mathematics is beginning to at-
tract a large following of people who, weary of the complexities of
the human equation in everyday activities, turn in their leisure to
the simplicities of the mathematical equation. It is for these people
that this book is written. Indeed, only two things are required of*
the prospective reader — an elementary training in mathematics,
and an interest in matters mathematical, These two prerequisites
are sufficient for an understanding of the first nine chapters of the
book. The tenth — and last — chapter is specifically designed for the
reader with more technical equipment.

Of all the problems dealt with in mathematics, paradoxes are
among the most appealing and instructive, The appeal of a para-
dox is difficult to analyse in a word or two, but it probably arises
from the fact that 4 contradiction comes as a complete surprise in
what is generally thought of as the only ‘exact’ science. And a
paradox is always instructive, for to unravel the troublesome line
of reasoning requires a close scrutiny of the fundamental principles
involved. In the light of these arguments it has seemed worth
while to bring out a book devoted exclusively to some of the para-
doxes which mathematicians, both amateur and professional, have
found disconcerting.

The material for this book has been gathered from a wide variety
of sources. Some of it has naturally appeared in other popular ex-~
positions of mathematics — such works as Ball’s Mathematical
Recreations and Essays, Steinhaus’ Mathematical Snapshots, and
Kasner and Newman’s Mathematics and the Imagination, to men-
tion only three. If this is a fault, it is not the fault of the author,
but of the material he is trying to present. An attempt is made, in
the majority of instances, to give references to original sources.
This is not always possible, however, particularly when the same
problem, in different forms, is to be found in a number of different
places.

The author wishes” to express his thanks to all who have
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contributed to the development of this book. He is particularly
indebted to Mr Henry C. Edgar, of the Hotchkiss School, for his
painstaking study and criticism of the entire manuscript. Without
his help many points, clear enough to the mathematician, would
have remained obscure to the general reader. Special thanks are
also due to the author’s former teacher and colleague, Professor
Einar Hille, of Yale University, who read and criticized the manu-
script from the point of view of the mathematician.

E. P. NORTHROP
Chicago, linois



CHAPTER ONE

What is a Paradox?

Two fathers and two sons leave town. This reduces the popula-
tion of the town by three, False? No, true - provided the trio con-
sists of father, son, and grandson.

A bookworm starts at the outside of the front cover of volume
T of a certain set of books and eats his way to the outside of the
back cover of volume ITI, If each volume is one inch thick, he must
travel three inches in all. True? No, false. A moment’s study of the
accompanying figure shows that he has only to make his way
through volume II - a distance of one inch.

Fia. 1

A man says, ‘I am lying.’ Is his statement true? If so, then he is
lying, and his statement is false. Is his statement false? If so, then
he is lying, and his statement is true.

The dictionaries define an island as ‘a body of land completely
‘surrounded by water® and a lake as ‘a body of water completely.
surrounded by land’. But suppose the northern hemisphere were
all land, and the southern hemisphere all water. Would you call
the northern hemisphere an island, or would you call the southern
hemisphere a lake?

11



F1G. 2. If the northern hemisphere were all land and the southern
hemisphere all water

Tt is of such brain-twisters as these that this book is composed.
There are paradoxes for everyone — from the person who left
mathematics behind in school (or who was left behind in school
by mathematics) to the professional mathematician, who is still
bothered by such a problem as that of the liar.

We shall use the word ‘paradox’, by the way, in the sense in
which it is used in these examples. That is to say, a paradox is any-
thing which offhand appears to be false, but is actually true; or
which appears to be true, but is actually false; or which is simply
self-contradictory. From time to time it may appear that we are
straying from this meaning. But be patient — what seems crystal-
clear to you may leave the next person completely confused.

*

If you are among those who at this point are saying, ‘But we
thought this book had to do with mathematical paradoxes ~ how
about it?’ then stay with us for a moment. If you are not inter-
ested in the answer to this question, you may as well skip to the
next chapter.

A closer look at the difficulties encountered in our first examples
will show that they are simply cases of very real difficulties en-
countered not only by the student of mathematics, but by the
mature mathematician as well.

In the problem concerning fathers and sons, we find ourselves
searching here and there for some instance in which the conditions
of the problem will be fulfilled. It seems at first as though such an
instance cannot possibly exist — common sense and intuition are

12



WHAT IS A PARADOX?

all against it. But suddenly, there it is — as simple a solution as can
be. This sort of thing happens time and again in mathematical re-
search. The mathematician, working on the development of some
theory or other, is suddenly confronted with a set of conditions
which appear to be highly improbable. He begins looking for an
example to fit the conditions, and it may be days, or weeks, or
even longer, before he finds one. Frequently the solution of his
difficulty is as simple as was ours - the kind of thing that makes
him wonder why he hadn’t thought of it before.

The problem of the bookworm’s journey is a nice example of
the way in which reason can be led astray by hasty judgement. The
false conclusion is reached through failure to investigate carefully
all aspects of the problem. There are many specimens of this sort
- much more subtle ones, to be sure - in the literature of mathe-
matics. A number of them enjoyed careers lasting many years be-
fore some doubting mathematician finally succeeded in discover-
ing the trouble.

The casé of the self-contradicting liar is but one of a whole string
of logical paradoxes of considerable importance, Invented by the
early Greek philosophers, who used them chiefly to confuse their

“opponents in debate, they have in more recent times served to
bring about revolutionary changes in ideas concerning the nature

- and foundations of mathematics. In a later hapter we shall have
more to say about problems of this kind.

The island-and-lake problem, which had to do with definitions
and reasoning from definitions, is really typical of the develop-
ment of any mathematical theory. The mathematician first defines
the objects with which he'is going to work — numbers, or points,
or lines, or even just ‘elements’ of an unspecified nature. He then
lays down certain laws — ‘axioms’, he calls them, or ‘postulates’
- which are to govern the behaviour of the objects he has defined.
On this foundation he builds, through a series of logical argu-
ments, a whole structure of mathematical propositions, each one
resting on the conclusions established before it. He is not inter-
ested, by the way, in the fruth of his definitions or axioms, but asks
only that they be consistent, that is, that they lead to no real con-
tradiction in the propositions (such, for example, as the contra-
diction in the problem of the liar). Bertrand Russell, in his Mysti-
cism and Logic, has put what we are trying to say in the following
words:

13



RIDDLES IN MATHEMATICS

Pure mathematics consists entirely of assertions to the effect that if such
and such a proposition is true of anything, then such and such another
proposition is true of that thing. It is essential not to discuss whether the
first proposition is really true, and not to mention what the anything is
of which it is supposed to be true. . . . Thus mathematics may be defined
as the subject in which we never know what we are talking about, nor
whether what we are saying is true.

How is that, by the way, for a paradox?



CHAPTER TWO

Paradoxes for Everyone

MANY of the anecdotes and problems of this chapter are fairly
well known, All of them have probably appeared in print in some
form or other and at some time or other, and a few are so common
that they can be found in almost any book on mathematical puzzles
and games, It is next to useless to try to trace them to their original
sources — most of them, like Topsy, ‘just growed’.**

%

We shall begin with a couple of lessons in geography. The first

concerns a man who, you will say, must have been a crank. He

designed a square house with

windows on all four sides, each m

window having a view to the

south. No bay windows (which

would take care of three sides)

or anything of that sort. Now

how on earth can this be done? "."

Where on earth would be more

to the point, for there is indeed

only one place where such a

house can be built. Does that

give it away? You’ve got it —it’s

the North Pole, of course, from

which any direction is south.
Without the foregoing dis-

cussion, the following problem

strikes most people as quite

paradoxical. A certain sports-

man, experienced in shooting small game, was out on his first bear

hunt. Suddenly he spotted a huge bear about a hundred yards due

east of him. Seized with panic, the hunter ran - not directly away

F1G. 3. Any direction {rom the
North Pole is south

* See page 227. Notes and references for all chapters will be found near the
end of the book. They are inserted for the convenience of all who areinterested
“in them and can be ignored safely by all who are not.
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from the bear, but, in his confusion, due rorth. Having covered
about a hundred yards, he regained his presence of mind, stopped,
turned, and killed the bear — who had not moved from his original
position — by shooting due south. Have you all the data clearly in
mind ? Very well, then; what colour was the bear ?

N

100

N

7] 100 %

FiG. 4. Details of the bear hunt

The same problem can be put in another, although perhaps less
startling, form. Where can a man set out from his house, walk five
miles due south, five miles due west, and five miles due north and
find himself back home ?

*
Charles L. Dodgson, better known to the general public as Lewis
Carroll, the author of Alice in Wonderland, is recognized by mathe-
maticians and logicians as one of their own number. We are in-
debted to him for the following paradox,? as well as for several
others which appear in later parts of the book.

We can agree, can we not, that the better of two clocks is the
one that more often shows the correct time ? Now suppose we are
offered our choice of two clocks, one of which loses a minute a
day, while the other does not run at all. Which one shall we accept ?
Common sense tells us to take the one that loses a minute a day,
but if we are to stick to our agreement, we shall have to take the
one that doesn’t run at all. Why ? Well, the clock that loses a minute

16



- PARADOXES FOR EVERYONE

“‘a day, once properly set, will have to lose 12 hours, or 720 minutes,
‘before it is right again. And if it loses only a minute a day, it will
take 720 days to lose 720 minutes. In other words, it is correct only
once about every two years. But the clock that doesn’t run at all is
correct twice a day!

*
Apparently impossible results are frequently obtained through
either too little attention to relevant details or too much attention
to irrelevant ones. Let’s look at a few problems of this kind. We
shan’t bother, by the way, to discuss their solutions here.

FiG. 5. Equal in value or not?

A scatter-brained young lady once went into a jeweller’s shop,
picked out a ring worth £1, paid for it, and left. She appeared at
the shop the next day and asked if she might exchange it for
another. This time she picked out one worth £2, thanked the jewel-
ler sweetly, and started to leave. He naturally demanded an addi-
tional £1. The young lady indignantly pointed out that she had
paid him £1 the day before, that she had just returned to him a £1
ring, and that she therefore owed him nothing. Whereupon she
stalked out of the shop and left the jeweller wildly counting on his
fingers.

Then there is the story of the young man who once found him-
self applying for a job. He told the manager that he thought he
- was worth £300 a year to him. The manager apparently thought
otherwise. ‘Look here,” he said, ‘there are 365 days in the year.
You sleep 8 hours a day, or a total of 122 days. That leaves 243.

17
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You rest 8 hours a day, or a total of 122 days. That leaves 121,
You do no wotk for 52 Sunidays. That leaves 69 days. You have
half a day off on 52 Saturdays ~ a total of 26 days. That leaves 43,
You have an hour off for lunch each day — a total of 15 days. That
leaves 28, You have a fortnight’s holiday. That leaves 14 days.
And then come Easter Monday, Whit-Monday, August Bank
Holiday, and Christmas. Do you think you’re worth £300 to me
for 10 working days?’

A group of seven weary men once arrived at a small hotel and
asked for accommodation for the night, specifying that they wanted
separate rooms. The manager admitted that he had only six rooms
left, but thought he might be able to put up his guests as they de-
sired. He took the first man to the first room and asked one of the
other men to stay there for a few minutes. He then took the third
man to the second room, the fourth man to the third room, the
fifth man to the fourth room, and the sixth man to the fifth room.
Then he returned to the first room, got the seventh man, and
showed him to the sixth room. Everyone was thus nicely taken care
of, Or was he? ‘

Here is another problem of this type, not quite so simple. Three
men had dinner at a hotel, received a bill for 30 shillings, and each
handed a 10-shilling note to the waiter. He took the money to the

" office, where he was told that there had been a mistake — the bill
should have been for 25 shillings, not 30; so he was sent back with
5 shillings. On the-way back it occurred to him that S shillings was
going to be difficult to divide between three men, that the men did
not know the actual amount of the bill anyway, and that they
would be glad of any return on the money. So he kept 2 shillings
and returned one to each of the three men. Now each of the men
paid 9 shillings. Three times 9'is 27. The waiter had 2 shillings in
his pocket. 27 plus 2 is 29, and the men originally handed over 30
shillings. Where is that other shilling?

While we are on the subject of money, there is that very puzzling
story having to do with foreign exchange. The governments of two
neighbouring countries - let’s call them Northia and Southia—had
an agreement whereby a Northian dollar was worth a dollar in
Southia, and vice versa. But one day the government of Northia
decreed that thereafter a Southian dollar was to be worth but ninety
cents in Northia. The next day the Southian government, not to be
outdone, decreed that thereafter a Northian dollar was to be-worth

18
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but ninety cents in Southia. Now a bright young man lived in a
town which straddled the border between the two countries, He
went into a store on the Northian side, bought a ten-cent razor,
and paid for it with a Northian dollar, He was given a Southian
dollar, worth ninety cents there, in change. He then crossed the
street, went into a Southian store, bought a ten-cent package of
blades, and paid for it with the'Southian doilar, There he was given
a Northian dollar in change. When the young man returned home,
he had his original dollar andhis purchases, And each of the trades-
men had ten cents in his cash-drawer, Who, then, paid for the
razor and blades? .

One of the oldest paradoxes is that of the wealthy Arab who at
death left his stable of seventeen beautiful horses to his three sons.
He specified that the eldest was to have one half of the horses, the
next one-third, and the youngest one-ninth, The three young heirs
were in despair, for they obviously could not divide seventeen
horses this way without calling
in the butcher. They finally
sought the advice of an old and
wise friend, who promised to
help them. He arrived at the
stable the next day, leading one
of his own horses. This he added
to the seventeen and directed
the brothers. to make their
choices. The eldest took one
half of the eighteen, or nine; the
next, one-third of the eighteen, -
or six; and the youngest, one- y
ninth of the eighteen, or two. Fia. 6. The fractions %, 4, and 2 do
When all seventeen of the not total-1

original horses had been chosen,

the old man took his own horse and departed. The catch? It’s in
the father’s stipulations. Either he was a poor arithmetician or he
wanted to give his sons something to think about. At any rate, the
fractions one-half, one-third, and one-ninth do not add up to
one-as they should if nothing is to be left over - but to seventeen-
eighteenths.

*
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A Jarge business firm was once planning to open a new branch in
a certain city, and advertised positions for three clerks, Out of a
number of applicants the personnel manager selected three prom=
ising young men and addressed them in the following way:

“Your salaries are to begin at the rate of £200 per year, to be paid
every half-year. If your work is satisfactory, and-we keep you, your
salaries will be raised. Which would you prefer, a rise of £30 per
year or a rise of £10 every half-year?’ The first two of the three
applicants eagerly accepted the first alternative, but the third young
man, after a moment’s reflection, took the second. He was promptly
putin charge of the other two. Why? Was it because the personnel
manager liked his modesty and apparent willingness to save the
company money? Not at all. As befitting his position, he actually
received more salary than his companions, They had jumped to
the conclusion that a rise of £10 every half-year was equivalent to
a rise of £20 per year, but he had taken all the conditions of the
problem into consideration. He had lined up the two possibilities
and had looked at the yearly salaries in this way:

£30 rise yearly £10 rise half-yearly
Ist year  £1004£100=£200  £1004+£110 =£210
2nd year 115+ 115= 230 1204130 = 250
3rd year 1304 130= 260 140+ 150= 290
4th year 145+ 145= 290 1604 170 = 330

It was then immediately apparent to him that his salary in suc»
ceeding years would exceed theirs by £10, 20, 30, 40, and so on,
his rise each year exceeding theirs by £10. It was his alertness of
mind, and not his modesty, that impressed his new employer.

*

Most people are easily confused by problems involving average
rates of speed. Try this one on your friends.

A man drove his car 1 mile to the top of a mountain at the rate
of 15 miles per hour. How fast must he drive 1 mile down the other
side int order to average 30 miles per hour for the whole trip of 2
miles?

First Jet us look at it in this way: he would average 30 miles per
bout for the whole trip if he drove the second mile at the rate of
45 miles per hour, for the average of 15and 45is (15 +45)/2, or 30.

But now suppose we look at it in another way. Using our old

20



PARADOXES FOR EVERYONE

friend, the relation “distance =rateX time’, we note that the time
required to drive 2 miles at the average rate of 30 miles per hour
is & of an hour, or 4 minutes. Furthermore, the time required to
drive 1 mile at the rate of 15 miles per hour is & of an hour, or
again 4 minutes. In other words, our traveller must cover that
second mile in 0 seconds flat!

Average 30 m.p?l;. for the 2 miles
Fi1c.7

Which of these results are we to accept? The second is the cor=
rect one, and shows that considerable care must be used in averag-
ing rates. The average rate for any trip is always found by dividing
the zotal distance by the total time. In our first analysis, if the man
drives one mile at 15 miles per hour and a second mile at 45 miles
per hour, the times for those two miles are 7% and 2 of an hour
respectively, or 3% of an hour in all. His average rate is thus 2/4
or 22-5 miles per hour. This discussion should furnish a practical
tip to those drivers who allow just so much time to get somewhere,
They cannot average 50 miles per hour, for example, by going a
certain number of miles at 40 miles per hour and the same number
of miles at 60 miles per hour, On the other hand, they car average
50 by going 40 and 60 for the same number of #ours. For if they
maintain these respective rates for one hour each, they will have
gone 100 miles in 2 hours.

With the help of the above discussion you ought to be able to
pick out the flaws in the following two arguments. If not, you
I;wéll find their solutions in the Appendix towards the end of the

ok.

Paradox 1. A plane makes a trip from London to Liverpool and
back to London. Call the distance between the two cities 200 miles
and the speed of the plane 100 miles per hour. Then the time

21
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required for the réund trip, ignoring stops; is 4 hours, Now suppose
there is a strong wind which blows throughout the entire trip with
the same speed and in the same direction - from London directly
towards Liverpool, say. Then the tail wind on the way south will
speed up the plane to the same extent that the head wind will re«
tard it on the way north. In other words, both the average speed
of the plane and the time-for the round trip will be independent
of the speed of the wind. But this means that the plane can still
make the trip in 4 hours even though the speed of the wind is
greater than that of the plane, in which case the plane would be .
blown backwards on the trip from Liverpool to London!

60 at 5 for 2d.
F10.8

Paradox 2. Each of two apple women bhad 30 apples for sale,
The first sold hers at the rate of 2 a penny, the second at the rate
of 3 a penny. When the apples were sold their respective receipts
were 15 pence and 10 pence, or 25 pence in all, Next time the
women decided to do business together, so they pooled their 60
apples and sold them at the rate of 5 for twopence (2 a penny plus
3 a penny). Upon counting their joint receipts they were dismayed
to find that they had only 24 pence. They searched all about them
for that other penny and wound up by bittesly accusing each other
of having taken it, Where was it?

*
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There are many problems in which the obvious solution is never
the correct qne. That is to say, what offhand appears to be true is
false. The following four deserve mention, although they are pretty
well known. As in the case of the last two paradoxes, their cotrect
solutions are given in the Appendix.

Paradox 3. A clock strikes six in § seconds, How long does it
take to strike twelve? No! The answer is not 10 seconds.

Paradox 4. A bottle and its cork cost together 1s 1d, The bottle
costs a shilling more than the cork. How much does the bottle
cost? No! The answer is not 1s.

Paradox 5. A frog is at the bottom of a 30-foot well. Each hour
he climbs 3 feet and slips-back 2. How many hours does it take
him to get out? No! The answer is »oz 30 hours,

Paradox 6. An express leaves London for Brighton at the same
time as a slow train leaves Brighton for London. The express
travels at the rate of 50 miles per hour, the slow train at the rate
of 30 miles per hour. Which is farther from London when they
meet? No! The answer is not the express.

*

Two problems, similar to the last four, had better be taken up in
detail here.

A farmer’s wife once drove to town to sell a basket of eggs, To
her first customer she sold half her eggs and half an egg. To the
second customer she sold half of what she had left and half an egg,
And to the third customer she sold half of what she then had left
and half an egg. Three eggs remained. How many did she statt out
with? Now the only thing which makes this problem paradoxical
is this additional condition: ske didn’t break any eggs. It takes only
a moment’s reflection, though, to see that this condition will be
fulfilled if she starts with an odd number of eggs. The answer is 31,

And now for our second problem. Let’s suppose that we have
in one glass a certain quantity of water and in another glass an
equal quantity of milk, We shall assume, by the way, that this is
good, old-fashioned, unwatered milk, We take a teaspoonful of
milk from the first glass, put it in the second, and stir. We then
take a teaspoonful of the mixture from the second glass and put
it back in the first glass. Now is there more water in'the milk than
milk in the water, or more milk in the water than water in the milk?

The people to whom this problem is proposed generally split up
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into two groups. On the one hand are those who support the first
suggestion; on the other hand, those who support the second.
Both are wrong. Why? Well, suppose for simplicity, that we start
with 4 teaspoonfuls each of milk and water. If we put one teaspoon-
ful of milk in the water, the resulting five teaspoonfuls of mixture

First
07 swep
. 7./}
///////
Y,
4 milk 4 water

8econd 7
step AN

8 milk’

AN

85’5 water
% milk
(u:t\u.!l.y mixed)
F16. 9. Details of the milk and water problem

is 4 milk and & water. When we transfer one teaspoon of the mix-
ture to the glass of milk, we are returning % of a teaspoonfiil of
milk - thus leaving ¢ of a teaspoonful of milk in the water — and
are adding ¢ of a teaspoonful of water to the milk. Thus there are
equal quantities — ¢ of a teaspoonful - of milk in water and water
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in milk, Incidentally, it makes no difference whether or not we
stir the mixture! Can you see why?

*

We conclude this chapter with a few puzzles involving family re-
lationships.? Such puzzles are not, strictly speaking, a part of
mathematics, yet the type of reasoning required for their solution
is closely akin to the type of reasoning sometimes used by the
mathematician.

Take this situation, for example. A big Indian and a littleIndian
are sitting on a fence. The little Indian is the son of the big Indian,
but the big Indian is not the father of the little Indian, What re-
lationship exists between the two? The answer is ‘mother and son’,
but most people fail to get it the first time they hear the story.
Their failure can perhaps be traced to the fact that they learn, as
children, about division of labour among Indians, and just natuge
ally assume that the squaw doesn’t have time to sit on fences,
whereas the brave has all the time in the world. The solution of
this puzzle, then, requires the ability to dismiss fixed ideas and to
look for new ones ~ a trait which is sometimes of great value to
the mathematician.

Brothers and sisters have I rione,
But that man’s father is my father’s son

is a fairly well-known riddle and presents no great difficulties. If
the speaker is, as he says, an only child, then ‘my father’s son’ is
the speaker himself. And if ‘that man’s father’is *my father’sson’,
then ‘that man’s father’ is the speaker. Therefore ‘that'man’ is the
son of the speaker. All of which not only sounds like a demonstra«
tion in geometry, but actually is like one.

Then there is the complicated family gathering consisting of one
grandfather, one grandmother, two fathers, two mothers, four
children, three grandchildren, one brother, two sisters, two sons,
two daughters, one father-in-law, one mother-in-law, and one
daughter-in-law. Let’s count them up. Twenty-three people, you
say? No, only seven. There were two girls and a boy, their father
and mother, and their father’s father and mother. A detailed ex-
planation here is literally too much for words. The most satisfac-
tory thing to do is to sit down, write out a list of the seven people
involved, and check off the twenty-three relationships.
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Surely you have heard of the man who once married his widow’s
sister. ‘Now that’, you will reply, ‘is utterly impossible. After all,
a man’s widow does not exist until the man himself ceases to exist.’
Well, it all happened this way. When the man - let’s call him John
- was young, he married a girl named Anne. A few years later
Anne died. But Anne had a sister, Betty, and John took het for
his second wife. Then John died, making Betty his widow. Had not
John once married Anne, his widow’s sister? Sorry — the catch
there was a grammatical one!

In these days of relatively frequent divorces and remarriages it
is quite possible for two men, totally unrelated, to have the same
sister. A diagram will be of help here.

Mrs A4 Mr 4 Mr A——Mrs B Mrs B- Mr C

Son (44) Daughter (4B) Son (BC)

As is indicated, Mr and Mrs 4 had a son, 44, Mr and Mrs 4 were .
then divorced, and Mr A proceeded to marry Mrs B. These two

had a daughter, 4B. Mr A was apparently a difficult man to get

along with, for it was not many years before his second wife

divorced him and married Mr C. A son, BC, was born of this last

marriage. And now for the dénouement. The two sons, 44 and

BC, have no common blood in their veins. They are therefore tot-

ally unrelated. Yet each of them is the brother of the daughter,

AB, for A4 and AB had the same father, Mr 4, and 4B and BC
had the same mother, Mrs B.A

Everyone has heard of the fallibility of lawmakers and of the
laws they make. There is, for example, the choice gem said to have
been produced by those who are responsible for railway traffic in
one of the south-western states of the U.S.A. It ran something like
this: ‘If two trains, travelling in opposite directions along the same
single track, shall meet one another, neither shall proceed until the
other has withdrawn.’

But of all the laws that can lead to extraordinary situations, one
of the best — or worst — comes from England. There, between 1907
and 1921, it was possible for a boy to be the legitimate son of his
father and, at the same time, the illegitimate son of his mother.
For during that period of fourteen years it was legal for a man to
marry the sister of his deceased wife, while it was not legal for a
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woman to marry the brother of her deceased husband.’ And here
is what might have happened:

Johs (first marriage)

Sally

(brothers) (sisters)

James (first marriage) Susan
‘The brothers John and James of our diagram took as their brides
the sisters Sally and Susan. That is to say, John married Sally and
James married Susan. A few years later both James and Sally died,
and John and Susan, after a decent period, were married. Then
John was legally married to Susan, his former sister-in-law, but
Susan was not legally married to John, her former brother-in-law,
Consequently Charles, who was born of this union, was the legi-
timate son of his father and the illegitimate son of his mother.
Asafinal complication we offer the strange case of two men each
of whom was at the same time both nephew and uncle of the other.
Impossible? No, though perhaps improbable. Here is one solution:

Mr Allen——-Mrs A]len-TDick
Tom Harry
Mr Black——Mrs Black-——Tom

Dick . George

In our diagram are Mr and Mrs Allen, who had a son Tom, and
Mr and Mrs Black, who had a son Dick. Mr Allen and Mr Black
both died. And Tom and Dick, after they were grown men, each
married the other’s mother. Dick and Mrs Allen then had a son
Harry, and Tom and Mrs Black a son George. Now consider the
relationship between Harry and George. Since Harry is the brother
of Tom, George’s father, Harry must be George’s uncle. On the
other hand George is the brother of Harry’s father, Dick, so Harry
must be George’s nephew. In exactly the same way George is
‘Harry’s uncle and nephew.
But this way madness lies.
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CHAPTER THREB

Paradoxes in Arithmetic

(Notg: Throughout this chapter the billion used is the Continental or
American billion, or one thousand million; not the English billion, which is
one million million. It may be remarked that the Continental usage is much
more convenient than the English, and has in fact recently been adopted by
the Economist.)

ARITHMETIC is-a storehouse of almost unbelievable results. In a
single chapter it is possible to discuss only a few of the surprises to
be found in this subject, and for the most part we shall confine our
attention to some of the remarkable properties of the number 2,
There is not much here that the mathematician will find startling
- the results to be discussed are paradoxical to the non-mathe-
matician in that he would probably pronounce them false, or at
least highly improbable, if he were asked to give his snap judge-
ment on them.

SOME LARGE NUMBERS

In these days of billion-pound government loans and appropria-
tions, most of us have lost our respect for large numbers and are no
longer able to appreciate their actual magnitude.

*

Fi1c. 10

Just how big is a billion, anyway? Well, let’s think for the
moment of tiny cubical blocks a quarter of an inch each way. A
billion such blocks would almost fill a room 21 feet long, 21 feet
high, and 21 feet wide.
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If spread out in a single layer, they would completely cover 3

full-size football grounds and nearly two-thirds of a fourth.

[—] T—T o —
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Fi1aG. 11

And if ‘arranged in a straight line, they would reach almost
4000 miles — more than the distance between London and Chicago.

Or let’s think of a billion in connexion with time. A billion
seconds ago all people now thirty-one years old were not yet born.
In 1903 only a billion minutes had elapsed since the birth of
Christ. And a billion days ago man was just about to put in an
appearance on this earth.

Finally, if your peace of mind is still undisturbed at the thought
of the present public debt, consider the fact that in order to pay off
a hundred billion pounds at the rate of one pound a second,
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twenty-four hours a day, seven days a week, and fifty-two weeks a
year, it would take about 3,180 years to complete the task!
*

Physicists, chemists, astronomers, and others who deal with large
numbers use a very convenient notation in writing them. Note
first that a billion is the product of nine 10’s. That is to say:

1,000,000,000=10x 10 x 10 x 10x 10X 10X 10X 10X 10

Now if we denote the product of two 10’s by 102, of three 10’s by
103, of four 10’s by 104, and so on, then a billion, being the product
of nine 10’s, can be written as 10°. Again, four billion can be written
as 4x 109, or 4 with the decimal point moved nine places to the
right; 34,870,000,000 as 3-487 x 1019, or 3-487 with the decimal
point moved ten places to the right; and so on.

If we do not wish to be too exact, but merely want some idea of
the magnitude of a number, we can say, since 3-487 is nearer to 3
than to 4, that 34,870,000,000 is ‘about’ 3 x 1019, If we are after an
even rougher approximation, we can say that 31010 is, ‘to the
nearest power of 10°, 1010, In other words, 3 X 1010 is nearer to
1x 1010, or 1019, than to 10x 1020, or 101,

What of a number like 432 ? This is to be interpreted as 4 3%=49,
and not as (43)2= 642,

We can improve our familiarity with this notation by discussing
the following problem. What is the largest number which can be
written with three 2’s ? Some possibilities which immediately occur
to us are

222,222, 222 and 222,

The smallest of these is 222= 24=16. Then come 222, and 222=484.
The largest is 222=4,194,304, or about 4 X 109,

What if we use four 2’s instead of three? The possibilities,
arranged in order of increasing magnitude, are now

2222, 2222 2222 2222 Q222 2222 and 2222,
The respective values of the first six of these, to the nearest power
of 10, are
103, 104 105, 1029, 1067, and 1014,
But the last representation yields 24 194304 or about 101 260,000,
This puts a mere billion to shame, being a billion multiplied by
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itself some 140,000 times! Did it ever occur to you that four
simple 2’s could ever amount to that much?
' *
Figure 13 is an attempt to illustrate the fact that each person now

living had 2 parents, 4 grandparents, 8 great-grandparents, and so
on. That is to say, one generation ago he had 2 ancestors. Two -

N > - L - - -
\-—@- v _@J

Fia, 13, A family tree in reverse

generations ago he had 4, or 2X 2, or 22 ancestors. Three genera-
tions ago he had 8, or 2X2X 2, or 23 ancestors. Four generations
ago he had 16, or 2X2X2X2, or 24 ancestors. And so on, In
general, » generations ago he had 2X2X 2X ... X 2 (the product of
n twos), or 2* ancestors. Now suppose we assume there are 30
years to a generation. Then only 600 years ago — 20 generations
back, that is - each one of us had 229, or 1,040,400 ancestors!
‘Someone once used this argument to ‘prove’ that six hundred
years ago there were over a million times as many people on this
earth as there are today. It doesn’t take a census expert to figure
out his error. Can you find if?
. .
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The chain letter is an old evil which turns up in some form or other
every few years. Consider the simple case in which a person sends
~ acertain letter to two friends, requesting each of them to copy the
letter and send if to two of their friends, and so on, Then the first

/‘\
g = =N
F1G. 14. The chain lefter

set consists of two, or 21 letters, the second set of four, or 22 letters,
the third set of eight, or 23 letters, and so on. Now how many sets
of letters would have to be sent in order that every one of the
two billion men, women, and children in the world - literate or
illiterate — receive one and only one letter? It is not difficult to show
~ that it would take no more than thirty sets! The thirtieth set alone
" would consist of 230 =1,073,741,824 letters.

The thirtieth power of 2 turns up again in the thrifty savings
scheme whereby we put away one penny on the first day of the
month, two (21) pence on the second day, four (22) pence on the
third day, eight (23) pence on the fourth day, and so on - each day
doubling the amount of the previous day. Noting that here the
power of 2 in each case is one less than the number of the day, it
is readily seen that on the thirty-first of the month we should have
to put away 239, or over a billion, pence — more, that is, than four
million pounds. The total amount saved would be about twice as
much,

*
You should by now be well prepared for the next problem -a good
one to try on your friends. Suppose we havé a large sheet of very
thin rice paper one-thousandth of an inch thick, or a thousand
sheets to the inch. We tear the paper in half and put the two pieces
together, one on top of the other. We tear them in half and put
the four pieces together in a pile, tear them in half and put the
eight pieces together in a pile, and so on. If we tear and put to-
gether fifty times, how high will the final stack of paper be? The
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usual responses are amusing. Some people suggest a foot, others
go as high as several feet, and a few of the bolder ones throw
caution to the winds and risk their reputation for sanity on a mile,
All of them refuse to believe the correct answer, which is well over
Seventeen million miles!

If you are among the unbelievers, you can work the problem out
very simply as follows. As was indicated abgve, the first tear results
intwo, or 21, pieces of paper; the second tear in four, or 22, pieces;
the third tear in eight, or 23, pieces; and so on. It is evident at once
that after the fifticth tear the stack will consist of 250 sheets of
paper. Now 250 is about 1,126,000,000,000,000. And since there
areathousand sheets to the inch, the stack will be 1,126,000,000,000
inches high. To get the height of the stack in feet, divide this
number by 12. And to get it in miles, divide the resulting number
by 5280, The final result, as we have said, is well over 17,000,000.

*

‘There are a number of ancient puzzle toys which are to be found
even today in many toy-shops. Among them is what is generally
known as the ‘Tower of Hanoi’, It consists of a horizontal board
with three vertical pegs, as shown in Figure 15. On one of the pegs
is arranged a series of discs of different sizes, the largest at the
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F1G. 15. The Tower of Hanoi -

bottom, the next largest on top of that, and so on, up to the small-
est at the top of the peg. The problem is to transfer all the discs
from the first peg to one of the others ~ say the third - in such a
way that the final arrangement is the same as the original one.
But only one disc is to be inoved at a time, and no disc shall ever rest
on one smaller than itself.
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For example, suppose the pegs are numbered I, II, and 11, and
the discs lettered 4, B, C, D, ... as in the figure, If there are only 2
discs, 4 and B, then B can be shifted to II, 4 to III, and B to IIT.
Thus 2 discs require 3, or 22—1 transfers. If there are 3 discs, 4,
B, and C, proceed as follows: Cto IlI, Bto II, Cto I, A to III, C
to I, B to III, and C to II. Thus 3 discs require 7, or 23 -1 trans=
fers, In general, it can be shown that if there are # discs, a mini«
mum of 2#—1 transfers is required. The game can, of course, be
played with discs of cardboard and imaginary pegs. Try it with
5'discs, which require 25— 1 =31 moves, and, as you become more
Jproficient, with an even greater number of discs. Here’s a helpful
hint, by the way. If the number of discs is even, move the first disc
to the peg numbered II; if it is odd, to III,

The origin of the game is described by one-author in the follows
ing way:t

In the great temple at Benares, beneath the dome which marks the
centre of the world, rests a brass plate in which are fixed three diamond
needles, each a cubit high and as thick as the body of'a bee, On one of
these needles, at the creation, God placed sixty-four discs of pure gold,
the largest disc resting on the brass plate, and the others getting smaller
and smaller up to the top one, This is the Tower of Bramah. Day dnd
night unceasingly the priests transfer the discs from one diamond needle
to another according to the fixed and immutable laws of Bramah, which
require that the priest on duty must not move more than one discata
timeand that he must place this disc on a needle so that there is no smaller
disc beneath it, When the sixty-four discs shall have been thus transferred
from the needle on which at the creation God placed them to one of the
other needles, tower, temple, and Brahmins alike will crumble into dust,
and with a thunder-clap the world will vanish,

In this case the number of transfers required is 264~1, If we
assume that the priests worked on a 24-hour schedule, transferring
discs at the rate of one a second and-never making a mistake, it
would take them' about 5-82X 1011 years, or nearly six billion
centuries, to complete the task, This world’s end prophecy is one
of the most optimistic on record!

*

The number 2641 is connected also with the origin of chess,
Legend has it that an ancient Shah of Persia was so impressed
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with the game that he ordered its inventor to ask whatever reward
he desired. The inventor -~ probably a clever arithmetician ~ asked
that he might have one grain of wheat for the first square of a

e e
T

F1a, 16. The chessboard and the grains of wheat

chessboard, two grains for the second square, four grains for the
third square, eight grains for the fourth square, and so on, until
all the squares of the board were accounted for. Now he was ask-
ing for

142422423 4., 4263 =264 - ]

grains of wheat, The Shah thought this a poor reward until his
advisers worked out the problem for him, They found that 264~ 1
is about 1-84X 1019, If it is assumed that there are 9000 grains of
wheat to the pint, this figure amounts to some 3X 1013 bushels,
which is several thousand times the world’s annual crop of wheat
even today!

If a second chessboard is placed next to the first, and if the
scheme of doubling the number of grains for each successive
square is continued, then the pile corresponding to the last square
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of the second board contains 2127 grains. If one grain is removed
from this pile, there remain

21271 =170,141,183,460,469,231,731,687,303,715,884,105,727.
This number is the largest known prime number.?

SOME NUMBER THEORY

The last problem brings us to some extraordinary properties of
the number 2 which are rather different from those we have been
considering, The investigation of prime numbers by both amateur
and professional mathematicians has resulted in a wealth of new
material for research. We recall that a prime number is defined
as a number which is exactly divisible by no numbers other than
itself and 1. The first twelve prime numbers, for example, are 1, 2,
3,5,7, 11, 13, 17, 19, 23, 29, and 31. The number 4 is not prime,
for it is divisible by 2. Again, 6 is not prime, for it is divisible by
both 2 and 3. .

Euclid, the great systematizer of geometry, proved about 300,
B.C. that the number of prime numbers is infinite. For many
centuries attempts have been made to devise some sort of formula
which will generate prime numbers only. For example, the man
who first ran across the formula 72 +n-+41 must have thought he
had something, for this expression yields a prime number when
n is any whole number from 1 to 39 inclusive. Thus if » is 1, the
formula gives 43; if n is 2, 47; if nis 3, 53; if nis 4, 61; and so on.
But if 7 is 40, the formula gives 1681, which is divisible by 41, being
(41)2, This example illustrates the uselessness, in mathematics, of
attempting to deduce a general conclusion from a fewspecific cases.

In 1640 the French mathematician Fermat believed that he had
found a formula generating prime numbers only. His suggestion
was 22n+1, where n is a whole number., The first five ‘Fermat
numbers’, as they are called, are

22041 =21 4+1=3,

22141 =22 +1=5,

22241 =24 +1=17,

22841 =28 41 =257,

22441 =216 41 =65,537,
(In connexion with the first of these numbers, we must recall from
algebra that any number raised to the Oth power is 1. See Appendix,
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page 214.) These are indeed all prime, yet Fermat later began to

doubt the truth of his generalization to the effect that his formula
- will always yield a prime number, It was not until a hundred years
Iater that Euler, a Swiss mathematician, found that the sixth
Fermat number, 2% -1 -=4,294,967,297, is the product of 641 and
6,700,417, and so is divisible by either. It has since then been veris
fied"that there are other Fermat numbers which are not prime.
On the other hand, no one knows as yet whether Fermat’s formula
gives any primes other than the first five which we have seen.

Fermat, could he but know it, might be consoled by the fact
that no one has succeeded in the particular quest in which he failed.
A formula that will generate prime numbers only has yet to be
found.

*

The expression 22741 turned up with renewed historical impore
tance toward the end of the eighteenth century. Anyone who has

.
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Division of the circle into 3, 6, 12, ... equal parts
Fie. 17

taken a course in plane geometry knows, as did the ancient Greeks;
that the circle can be divided by means of ruler and compasses
into certain numbers of equal parts, For example, to dividea circle
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into 2 equal parts, it is necessary only to draw a diameter. Each of
the resulting semicircles can then be bisected, giving 4 equal parts;
these can be bisected, giving 8 equal parts; and so on. The circle
can be divided into 6 equal parts by starting at any point on the
circumference and swinging successive arcs with radii equal to that
of the circle. By taking every other point of division, 3 equal parts
are obtained. The 6 equal parts can be doubled to 12, the 12
doubled to 24, and so on. A third method, somewhat more com-
plicated, results in a division of the circle into 5, and, through
doubling, into 10, 20, 40, ... equal parts. The methods for 6 and 10
can be combined to give 15 equal parts. Again, the 15 can be
doubled and redoubled by simply bisecting the arcs. We can state
all we have been saying in the following compact way. The circle
can, by means of ruler and compasses, be divided into 3, 5, or 2* (n
any whole number) equal parts, or any combination of these such as
3X5,3X28 5X 2%, and 3X 53X 2",

For fear that this statement is a bit too compact, let us write out
the first fifty whole numbers — beginning, of course, with 2 — and
circle all those included in the 3, 5, 2* combinations, We then have
the following array:

“@@@ .
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As we have said, the general conclusion stated above was known
to the ancient Greeks. For over two thousand years it remained
unknown whether the circle could or could not be divided into 7,
9, 11, 13, 17, 19, 21, 23, 25, ..., or any odd number of parts not
covered in the 3, 5, 2" combinations. Note that we say odd number
of parts. Even numbers need not be considered, because of the
factor 27, For example, the first uncircled even number in our array
is 14. Now if the circle can be divided into 7 equal parts, then a
division into 14 equal parts can be obtained by simply bisecting
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each of the arcs. Conversely, if a division into 14 equal parts is
possible, then 7 equal parts can be obtained by simply taking
every other point of division.

In 1796 a young German mathematician, Gauss, settled the
question once and for all, He proved that it is possible to divide the
circle into an odd number of equal parts if, and only if, the number
is a prime Fermat number ~ a number of the form 22°+4-1, that is -
or any combination of such numbers. Now the only known prime
Fermat numbers are those we discussed in the last section: 3, 5,17,
257, and 65,537, Consequently the construction is possible not
only for the odd numbers 3, 5, and 3X 5, but also for 17, 257,
65,537, 3X 17, 3X 257, 3X 65,537, 5X 17, 5X257, and so on. But
it is not possible for 7, 9, 11, 13, 19, 21, 23, 25, ... Thus, in our
array of the first fifty numbers, we can now circle 17, 2X 17 or 34,
and 3% 17 or 51, but none of the others.

The names of Fermat, Euler, and Gauss, mentioned in connex-
ion with the last two problems, are among the great names in the
history of mathematics. It is interesting to note that Fermat was
an amateur in the subject. He was by profession a judge - a coun=
cillor for many yeats in the local parliament of the city of Toulouse.

*

Powers of 2 are involved in still another matter of historical inter-
est. The early Greeks classified numbers not only as even or odd,
prime or composite, but also as perfect, excessive, or defective,
Consider the number 12, Its divisors, apart from 12, ate 1, 2, 3, 4,
and 6. And the sum of these divisors is 16, which is greater than
12, the number itself, The number 12 is therefore said to be de-
fective, 14, on the other hand, is excessive, for the sum of its divis-
ors - 1, 2, and 7 - is 10, which is less than the number itself, But 6
is a perfect number, for the sum of it divisors -1, 2, and 3 - is
equal to the number itself, The next perfect number is 28, Xts div~
isors are 1, 2, 4, 7, and 14, No odd numbers have ever been found
to be perfect, but it has never been proved that there are none.
Euclid proved that any number of the form 23~1(2%~ 1), where
a is a whole number, is perfect provided 2~ 1 is prime, The only
values of n for which it is known that 27— 1 is prime are the follow~
ing twelve: 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, and 127. Hence
only twelve perfect numbers are known.?s The first six of these ars
6, 28, 496, 8128, 33,550,336, and 8,589,869,056, The difficulty in
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working with the larger ones is easily seen if we note that the last
of them is given by 2126(2127~ 1), The second factor, 2127-1, is
the 39-digit number which appeared in connexion with the two
chess-boards (page 36). This, multiplied by 2126, gives 2 number of
77 digits!®

THE BINARY NUMBER SYSTEM

As an introduction to the present section, let us-consider a case of
fallacious.reasoning on the part of a beginner in arithmetic. He
started with the two identities

9+8+7+6+5+4-+3+2+1 =45,
14243 +4+4+546+7+8+9 =45,

and subtracted the second identity from the first, The difference of
the right-hand sides was 0. Bekinning to the left of the equality
signs, he set out to subtract 9 from 1. To do so, he had to borrow
1 from the 2 and subtract 9 from 11, This gave 2. He then sub-
tracted 8 from 1 (which was 2 before 1 was borrowed in the last
step), and to do so, he borrowed 1 from the 3 and subtracted 8
from 11, which gave 3. Then he subtracted 7 from 2, borrowing 1
from the 4, and so on, proceeding always to the next step on the
Ieft. These operations, when completed, resulted in the conclusion

that
8-+6-+4-+14+9+47+5+342=0,

or that 45 =0, Where did our beginner go wrong? He seems to
have done nothing different from what we do in subtracting say,
189 from 321. Let us look at this illustration in more detail,

321
- 189

C—

132

Here, in subtracting the first digits at the right, we borrow 1 from
the 2 and subtract 9 from 11. But do we really borrow 1? We do
not. When we write the number 321, we do not mean 3+2+-1, but
3.1004-2.104-1, or 3.102+4-2.101 41,109, (From this point on we
shall use the dot, ., rather than the cross, X, to signify multiplica-
tion.) Again, 57,289 means 5.104+4-7.103+2,102+8.101 49,100,
So when we think ‘borrow 1 from the 2°, we actually borrow 1.101
from 2.101, And in the next step, when we borrow 1 from 3 and
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subtract 8 from 11, we actually borrow 1,102 from 3.102 and sube
tract 80 from 110, which yields 30, or 3.10%, which is the meaning
of the ‘3’mtheresu1t.

This matter of ¢ posmonal notation’ ~ the convention whereby
the significance of a digit is indicated by means of its position in
the writien number - was developed by the Hindus about the be-
ginning of the sixth century A.D. It was one of the greatest advances
ever made in mathematics, If you do not believe this, just try
multiplying together two Iarge numbers expressed in Roman num-
erals! It may be worth noting in this connexion that the numerals
generally called *Arabic’ were actually an invention of the
Hinduss

Probably our number system is based on the number 10 because
of the fact that man has ten fingers, which in early times he used
(and still does use) as an aid in counting. ‘There is really no reason
why some number other than 10 should not be used as a base. It
has been suggested, for example, that the base 12 be adopted,
since 12 is divisible by 2, 3, 4, and 6, whereas 10 is divisible only
by 2 and 5. Arithmetical calculation would be simpler with the
base having the greater number of divisors. In the denary, or deci-
mal, system (base 10) we use the ten digits 0, 1,2, 3,4, 5,6, 7, 8,
and 9. In the duodecimal system (base 12) we should have to invent
symbols to designate the tenth and eleventh digits.

Would it not, someone may ask, be simpler to use a smaller
base ~ one that would require fewer digits? Now the binary system
(base 2) requires only the digits 0 and 1. Let us see what some of
our denary numbers would look like in the binary scale.

1= 1.20= 1
2= 1.2140.20= 10
3= - 1,2141.20= 11
5= 1.2240.21 41,20 = 101
6= 1.2241.2140.20= 110
7= 1.2241.2141,20= 111
8= 1.2340.224-0.21+0.20= 1,000
9= 1.2340.224-0.214+1.20= 1,001
10= 1.2340.2241.2140.20= 1,010
1l = 1.234+0.224-1,2141.20== 1,011
12= 1.234+1.,2240.2140.20= 1,100

41



RIDDLES IN MATHEMATICS

13= 1.2341.2240.214+1.20= 1,101
14= 1.2341.22+41.2140.20= 1,110
15= 1.234+1.2241.2141.20= 1,111
16 = 1.2440.2340,2240.214+0.20= 10,000

50 = 1.25+1.24+0.23+0.2241.21+0,20= 110,010

100 =1.26+1.25+0,24+0.23+1.224-0.21 +0.20 =1,100,100

It is evident at once that the disadvantage of this scale lies in the -
fact that it is laborious to write out a number even as small as our
100 - the first three-digit number in the denary scale requires the
use of seven digits in the binary scale.

Some of us are probably wondering why we have gone into this
matter anyway — the good old denary system we were brought up
on seems to have advantages enough. Of what real use is a system
such as the one with the base 22 We shall try to answer this ques-
tion with two examples ~ one involving a method of calculation
and the other a game.

*

A type of multiplication actually in use in the past requires no
knowledge of the usual twelve multiplication tables other than
that of the table of 2. Let us, for example, multiply 49 by 85 by
this method. Write down 49 at the head of one column and 85 at
the head of another. Divide 49 by 2 and multiply 85 by 2, writing
the results below the original numbers. Continue dividing by 2
in the first column and multiplying by 2 in the second. When an
odd number is divided by 2, throw away the remainder — this,
strangely enough, leads to no errors. Stop when 1 is reached in
the first column, The result is as follows:

(Divide by 2) (Multiply by 2)

49 85
24 70
12 340
6 689
3 1360
1 2720

4165

a2



PARADOXES IN ARITHMETIC

Now in the second column cross out all those numbers which are
opposite an even number in the first column, Add the remaining
numbers in the second column, and the correct result, 4165, is
obtained.

The workings of the method are easily seen if 49 is expressed in
the binary scale. For then

49.85=(1.25+1.241+0.234-0.22+0.214-1.29).85
=(32+16+4-0+0+0-+1).85
=2720-+1360+0+0+0+85
=4165.

Since 23, 22, and 21 do not appear in the binary representation for
49, 85 multiplied by 23 (680), by 22 (340), and by 2! (170) are not
among the numbers to be added in the second-column,

*

That the binary system can be used to definite financial advantage
is shown in the following story. A poor young American student,
brilliant in mathematics but inexperienced in the ways of the
world, had saved up enough money- to spend a year studying
abroad. On the boat trip to Europe he fell in with a group of pro-
fessional gamblers who in one evening of poker cleaned him of
almost all his money. The next evening he again ran into the group,
and another poker session was suggested. The young man admitted
modestly that he guessed he didn’t know the game well enough,
Perhaps the gentlemen would care to play a somewhat different
game? The gamblers agreed to this readily, counting on their
cleverness and their ability to cheat at almost anything. The young
man laid out on the table a number of heaps of matches.

*Now,’ said he to one of the men, ‘you may pick up as many of
the matches of any one heap as you wish, from one match to all
of the matches in that heap. I shall then do the same. We continue,
playing alternately, until all of the matches are gone. Whoever has
to pick up the last match loses the game.’

‘The rest of the story is easily imagined. The stakes were high,
and by the end of the evening the young man had not only won
back all his own money, but had miade enough to spend several
years abroad. As a matter of fact, he was still thére when last heard
from!

It takes a little time to explain how to force a win at this game,
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but some of us may want to see it through. Let’s call the two play-
ers A and B and look at a few winning combinations towards the
end of the game. If A can succeed in forcing B to draw from any
one of the four situations shown in the diagram, he will win.

Casel Case2 Case3 Cased
Ist pile i1 11 111 11

2nd pile 11 111 11 11
3rd pile 1 /
4th pile !

Case 1. (a) If B takes 1 match from the first pile, 4 takes all of
the second pile, leaving B to pick up the last match. (b) If B takes
all of the first pile, A takes one match from the second pile, and
again B picks up the last.

Case 2. (a) If B takes 1 from the first pile, A takes 1 from the
second and proceeds as in the first case. (b) If B takes 2 from the
first pile, 4 takes all of the second pile, and B picks up the last.
() If B takes all of the first pile, 4 takes all but one of the second.
 Case 3. (@) If B takes 1 from the first pile, 4 takes the single
match in the third pile and proceeds as in the first case. (b) If B
takes 2 from the first pile, 4 takes 1 from the second pile. Then B
takes 1, A takes 1, and B picks up the last. (c) If B takes all of the
first pile, A takes all of the second. (d) If B takes 1 from the second
pile, A takes 2 from the first pile. Then each take 1 and B takes the
last. (¢) If B takes all of the second pile, 4 takes all of the first pile.
(f) If B takes the single match in the third pile, A takes 1 from the
first pile and proceeds as in the first case.

Case 4. (a) If B takes 1 from either of the first two piles, 4 takes
all of the other of these piles. Then each takes 1 and B takes the
last. (b) If B takes all of either of the first two piles, A takes 1 from
the other of these piles. Then each takes 1 and B takes the last.
(©) If B takes either of the single matches, 4 takes the other and
proceeds as in the first case.

These cases evidently do not represent all possible finishes to the
game, but will do for our purposes. Suppose now that we replace
éach pile of matches in the diagram by the number of matches in
that pile, expressing the number in the binary scale. Recall from
the table on page 41 that 1 is writtenas 1.20=1,2as1.214+0.20 =
10, and 3 as 1.21+1.29 =11, Then the diagram for the four cases
considered becomes
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' Casel Case2 Case3 Cased
Ist pile 10 11 11 10
2nd pile 10 i1 10 10
3rd pile 1 1
4th pile 1

20 22 22 22

In each of the four cases the sum of the digits in each column has
been written at the bottom. We note that the digits in each sum
are even numbers, 0 (which is called ‘even’ in mathematics) or 2
- never an odd number such as 1 or 3. Herein lies the secret of the
game, The explanation will be clearer if we introduce the term
‘coefficient’. The number 567 in the denary system means 5.102
+6.10147.109, Here 7 is said to be the coefficient of 109, 6 the
coefficient of 101, and 5 the coefficient of 102, Similarly, in the
binary number 101, or 1.2240.21 41,29, the coefficient of 20is 1,
that of 2! is 0, and that of 22 is 1.

Now if 4 knows the game and B does not, 4 can force a win at
the very outset of the game in the following manner. He expresses
in the binary scale the number of matches in each pile and adds
all the coefficients of 29, of 21, of 22,..., of as high a power of 2 as
appears in any of the numbers. He then removes as many matches
from some pile or other as is necessary to leave the sum of the co-
efficients of each power of 2 an even number. When B draws, he is
bound to upset such an arrangement, and 4 repeats the process.
The only exception to the rule is this: A must never leave an even
pumber of piles containing only one match each,

In order to fix our ideas, let us work through one sample game
completely. Suppose there are four piles, with 6 matches in the first
pile, 5 in the second and third, and 3 in the fourth. A4 is to draw
first. The set-up is shown in the diagram, with, at the right, the
number in each pile expressed in the binary scale, together with
the sum of the coefficients of the various powers of 2.

110
101
101

11

323

drrrero oot ringl 1l
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Since the sums of the coefficients of 2° and 22 ate odd, 4 must
draw 3 matches from the first pile, leaving the arrangement

11
101

N N NN N I(I)i

224
in which the sums of the coefficients of all the powers of 2 are even.

Suppose B draws 4 matches from the second pile: Then the arrange-
ment is 1

1

Hr oo 11 10
11

124
A’s move is then to draw 4 matches from the third pile, leaving

11
1

111 I o1 1
11

24
Next suppose B takes all of the first pile, leaving the arrangement

1
1

{ {11 11

13
Now if 4 played according to rule, he would take all of the matches
in the last pile. But this play would leave two piles of one match
each - the exceptional case to be avoided. His correct play is to
remove 2 from the last pile, leaving an odd number of piles of one
each. A4 then goes on to-win. The exceptional case is not difficult
to avoid, for it can occur only late in the game at a time when the

end can easily be seen by using common sense alone.
This game pays large dividends in amusement for the small in-
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vestment of time required to learn to express numbess in the binary
scale and to add the coefficients rapidly®

MIND-READING TRICKS

The ability of a “miind-reader’ to determine a number selected by
someone in his audience is of the nature of a paradox to most
people. We conclude this chapter with a few examples of tricks of
this sort and shall show that they are based upon fairly simple
arithmetical operations. Anyone interested in studying the subject
further can find ample material elsewhere.®

*

The mind-reader (A1) asks a man in his audience (4) to think ofa
number, multiply it by 5, add 6, multiply by 4, add 9, multiply by
5, and state the result.

A chooses the number 12, calculates successively 60, 66, 264,
273, 1365, and announces the last number.

M subtracts 165 from this result, gets 1200, knocks off the two
zeros, and tells A4 that 12 was the number he thought of.

The trick is easily seen if put in algebraical symbols. If the
number 4 chooses is a, then the successive operations yield 5a,
5a-+6, 20a+-24, 20a+-33, and 100¢4-165. When M is told this
number, it is evident that he can determine g if he subtracts 165
and divides by 100 - or cancels the last two digits, which are always
ZeT0,

*
If M desires to tell 4 the result without asking any questions, he
must so arrange the various operations that the original number
thought of drops out. Here is an example in which three unknown
numbers are introduced and done away with.

M: Think of a number, Add 10, Multiply by 2. Add the number
of pence in your pocket, Multiply by 4. Add 20. Add 4 times your
age in years. Divide by 2. Subtract twice the number of pence in
your pocket. Subtract 10. Divide by 2. Subfract your age in years,
Divide by 2. Subtract the original number you thought of.

[4, who chooses the number 7, has 30 pence in his pocket, and
is 20 years old, thinks: 7, 17, 34, 64, 256, 276, 356, 178, 118, 108,
54,34, 17,10.]

M: Your result is 10, is it not?
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A: Right!

In this case, if we denote A’s original number by a, the number
of pence in his pocket by b, and his age in years by ¢, the successive
operations give @, a-+10, 2a+20, 2a+20+b, 82 +80+4b, 82 +100

+4b+4c, 4a+5042b+2¢, 4a+50+2c, 4a+40+2c¢, 2a+20+c,
2a+20, a+10, 10. Problems of this type can be set up in any
number of ways. .
Many tricks of the kind we-are discussing are based upon the
principle of positional notation. Consider the following:

M: Throw three dice and note the three numbers which appear.
Operate on these numbers as follows: multiply the number on the
first dice by 2, add 5, multiply by 5, 4dd the number on the second
dice, multiply by 10, add the number on the third dice, and state the
result,

[4 throws a 2, a 3, and a 4, and thinks: 4, 9, 45, 48, 480, 434.]
A: 484,

[M subtracts 250 and gets 234.] M: The numbers thrown were
2, 3, and 4, were they not?

A: Right!

More generally, suppose the numbers thrown are a, b, and c re-
spectively. Then the specified operations give, successively, 2a, 22
+5, 10a+25, 10a4-b+25, 100a+105+-250, 100a-+10b-+c+250.
If 250 be subtracted from this number, the result is 100a--105 +-c,
or a.102+45.101 +¢. 109, so that the digits which appear in the
final number are a, b, and c.

Another trick, based on positional notation, enables the mind-
reader to tell a person his age and the number of pence he has in
his pocket.

M: Multiply your age by 2, add 5, multiply the result by 50, add
the number of pence in your pocket (less than 100), subtract the
number of days in a year, and tell me the result.

{4, who is 35 years old and has 76 pence in his pocket, thinks:
70, 75, 3750, 3826, 3461.] A: 3461.

[M adds 115 to this number and gets 3576.] M: Your age is 35
and you have 76 pence.

A: Right!

Suppose that 4’s age is @, and that the pumber of pence he has
in his pocket is b. Then the operations specified by :M yield, suc-
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cessively, 2a, 2a4-5, 1002+4-250, 100a--b4-250, and 100a+4-b-115,
If 115 be added to this last number, the result is 100a+-b. Now if
A’s age is a two-digit number, then 10025 is a four-digit number.
The first two of these four digits give the number a, and the last
two digits the number .

Here is a series of operations which always yields the same result,

M: Take any three-digit number whose first and last digits differ
by more than 1, form a second number by reversing the digits, and
subtract the smaller number from the larger. To the resulting
number add the number formed by reversing ifs digits. Remember
the result.

{A thinks: 853, 358, 853 —358=495, 495-1-594 =1089.]

M: The result is 1089, is it not?

A: Right!

That the result is always 1089 can be seen from the following
general analysis:

Suppose the digits of the three-digit number are a, b, and ¢,
where a is greater than c. Then the number itself is @.10245.10

¢, or
10024-10b+-c.

The number formed by reversing the digits of this first number is
100c+-108+-a.

Subtracting the second of these numbers from.the first yields
100a2-100¢c+-0+-c~a.

By means of subtracting 100 and adding 90 and 10, this number
can be expressed as

100a-100c-1004-904-10-+-c~a,
or 100(a- ¢~ 1)4-90+(10+-c~a).
Reversing the digits of this number gives
100(10+-¢~a)+90+(a@—c—1).
If the last two numbers are added, all a’s and ¢’s drop out, leaving
or 1089, 900+18:+9,

This example and the next two are concerned with certain”
properties of the number 9.
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M: Choose any three-digit number in which the first and last
digits are unequal and form a sécond number by reversing its
digits. Subtract the smaller number from the larger and tell me the
first digit of the result.

[A thinks: 742, 247, 742— 247 =495.] A: The first digit is 4,

M: The other two are 9 and 5, are they not?

A: Right! .

In general suppose A’s original number has the digits g, 5, ¢,
where a is greater than ¢, Then the number is 100a-+105--c. Re-
versing the digits gives 100¢+4-105b+-a. The difference is 99(a— ¢).
It takes only a moment’s reflection to verify the fact that a—c¢
mustbe 1,2, 3,4, 5, 6,7, 8, or 9. The only possible final numbers
are therefore these numbers multiplied by 99 - that is to say, 99,
198, 297, 396, 495, 594, 693, 792, 891. Now in-all these numbers
(save the first) the middle digit is 9 ‘and thie sum of the first and
Iast digits is also 9. Hence if the first is known, so then are the

other two. .

_ Among the various important properties of the number 9 is the
following, which we state without proof. Ifany number is a multiple
of 9, the sum of its digits is also a multiple of 9 (for example, 27, 54,
126, 234, 18,954). Let’s see what use the mind-reader can make of
this principle.

M: Think of a number, multiply by 10, subtract the original
pumber, and add 54 (or any multiple of 9). In the resulting number
strike out any digit except a 0, and read me the others.

[4 thinks: 5238, 52,380, 52,380-5238 =47,142, 47,142--54

=47,196, 47,196.1 4: 4,1, 9, and 6.

[M adds these digits, gets 20, subtracts from the next greatest
multiple of 9 ~ which is 27 - and gets 7.1 M: The missing digit is
7,is it not?

A: Right!

This trick is-easy to understand if symbols are used. Suppose 4
picks a three-digit number whose digits are a, b, and ¢. Then the
pumber is 100a-+-10b+c. Multiplying by 10 gives 100021005

_4-10c. Subtracting the original number from this leaves 900a

4-90b+9¢. The multiple of 9 which is added can be denoted by
ok, whereupon the final number is 900a-+905-+9c+9%. This
number can be written as 9(100a4-105-+c+k), so it is evidently a
multiple of 9. It follows from the principle stated above that the
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sum of the digits of this number must also be a multiple .of 9.
Consequently the missing digit can always be determined by sub-
tracting the sum of the others from the next greatest multiple of 9,

*

The trick we have just discussed can be made even more baffling
in the following way:

M: Think of a number, subtract the sum of its digits, mix up
the digits of the resulting number in any way, add 31 [M remems-
bers that this number, divided by 9, leaves a remainder of 4],
strike out any digit except a 0, and give me the sum of the others.

[A. thinks: 1,234,567, 1,234,567 —28 =1,234,539, 5,923,143,
5,923,174, 5,923,174, 26.1 A: 26.

[M subtracts 4 (the remainder in dividing 31 by 9), gets 22,
subtracts it from 27 (the next multiple of 9) and gets 5.] M: The
missing digit is 5, is it not?

A: Right!

M can replace the number 31 by any number he pleases, pro
vided he remembers the remainder obtained in dividing by 9, and
subtracts this from the sum of the digits which 4 gives him before
he subtracts that sum from the next multiple of 9,

*

Let’s look at just one more example before we go on to other
matters,

M: Choose any prime number greater than 3, square it, add 17,
divide by 12, and remember the remainder,

[4 thinks: 11, 121, 138, 115, 6:]

M: The remainder is 6, is it not?

A: Right!

Here use is made of the fact — again stated without proof - that
any prime iumber greater than 3 is of the form6n+1, where n is a
whole number. (The symbol = means plus or minus.) Its square is
then of the form 36n2+ 12 +1. This number, when divided by 12,
leaves a remainder of 1. Now M had 4 add 17, which, divided by
12, leaves a remainder of 5. The final remainder must thus be
145, or 6.

M can vary this trick by asking 4 to add a number whose re-
mainder, in dividing by 12, is, say, k. Then the final remainder will -
always be 1+-%.
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CHAPTER FOUR

Paradoxes in Geometry

AMONG the simplest of all geometrical paradoxes are the optical
illusions, in which only the eye is fooled. Examples of this type
are to be found in almost any elementary geometry book, They
are used to warn the student against putting too much faith in the
way a figure looks — a warning all too soon forgotten, as we shall
see later in Chapter 6.

Consider the examples shown in Figure 18. Surely the line seg-
ment BC of diagram (a) is longer than the line segment 45. But
no — actual measurement shows that they are equal. Similarly, in
diagram (b), 4B and BC are equal, as are 4C and BD in (c). Again,

. F1a. 18, Optical illusions

arcs AB and CD in (d) are equal, although the arc without the
chord appears to be the longer. What of the segments p, ¢, and r
in (€)? Are they segments of parallel lines? Not at all — they are
parts of the same straight line. In (f), the two shaded portions have
equal areas. To prove this, note that if the radius of the largest
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circle is taken as 5, then the inner radius of the shaded ring is 4,
and the radius of the shaded circle is 3, Hence the area of the

()

o %

B
¢ b A

® )
F16. 18 (contd.). Optical illusions

shaded circle is mr2 =4,32 =9 square units, and the area of the
shaded ring is #.52— #.42 =257~ 16 =9 square units. In (g)
and (h), believe it or not, the lines 4B and CD are parallel straight
lines.

THE FIBONACCI SERIES

Another well-known paradox of much the same sort involves the
dissection and rearrangement of a figure. It is a good example of
the pitfalls of ‘experimental geometry’, a topic generally discussed
in the early stages of any course in plane geometry. For example,
the student is shown how to deduce experimentally the fact that
the sum of the angles of any triangle is a straight angle, or 180°. To
do so, he makes a triangle of paper or cardboard, cuts off the three
angles, and rearranges them as shown in Figure 19. Let us see to
what sort of contradiction this method of proof, not backed up by
sound logical argument, can lead. '
Suppose we take a square piece of paper and divide it into 64
small squares, as in a chessboard. We then cut it into two triangles
and two trapezoids in the manner indicated in Figure 20(a) and
rearrange the parts as in Figure 20(b). Now the resulting rectangle
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F1G. 19. The sum of the angles of a triangle is 180°

has sides which are respectively 5 units and 13 units long, so that
its area is 5.13 =65 square units, whereas the area of the original
figure was 8.8 =64 square units, Where did that additional square

o
4 ]
™
/
11 2
/
()
- \‘
4 2
1 N
3
iy
)

(c)
F1a6. 20, The dissection and re-
arrangement of a square

unit come from?

The truth is that the edges
of the parts 1, 2, 3, and 4 do
not actually coincide along
the diagonal PQ, but form a
parallelogram PSQR which is
shown in exaggerated propor-
tions in Figure 20(c). The area
of this parallelogram is the
elusive one square unit. The
angle SPR is so small that the
parallelogram is never noticed
unlessthecuttingandrearrange«
ment are done with great care.
Indeed, it is easy for those of
us who remember our trigoe
nometry to see from the figure
that tan x =% =-3750 and tan y

=% =25, Therefore x =20° 33/,
y=68° 12/, and £/ SPR=90°~
(20° 33’ 4-68° 12%) =1°15,

This particulaf example! and
its generalizations haveengaged
the attention of a number of
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mathematicians, Lewis Carroll among them. It is based on the
relation 5.13 — 82 =1. (Recall that the dimensions of the original
square were 8 by 8, and those of the resulting rectangle, 5 by 13.)
The numbers 5, 8, and 13 are consecutive terms of the so-called
Fibonacci series,

0,1,1,2,3,5,8, 13, 21, 34, 55, 89, 144, ...

Each term of this series, after the first two, is the sum of the pre-
ceding two terms. That is to say, 0+1=1, 1+1=2, 142=3,
243 =5,3+5=8, 5+8=13, 8-+-13 =21, and so on, The series is
named after Fibonacci (Leonardo of Pisa), an Italian mathemas
tician of the thirteenth century. Examples similar to ours can be
constructed by using other sets of three consecutive terms, such as

5.2-32=1,13.34-212=1, 34,89 - 552 =1, ...,
or
52-3.8=1,132-8.21 =1, 342—21,55 =1, ..,

*

Although the Fibonacci series is not of any great importance in
pure mathematics, the fact that it has been found to occur both in
nature and in art is paradoxical enough to warrant investigation,

First let us examine the arrangement of leaves - or buds, or
branches — on the stalk of a plant. Suppose we fix our attention on
some leaf near the bottom of a stalk on which there is a single leaf
at any one point. If we number that leaf 0 and count the leaves up
the stalk until we come to one which is directly over the original
one, the number we get is generally some term or other of the
Fibonacci series, Again, as we work up the stalk, let us count the
number of times we revolve about it. This number, too, is gener=
ally a term of the series,

If the number of revolutions is m, and if the number of leaves
is n, we shall call the arrangement an “mj/n spiral’. For example,
Figure 21(a) shows a % spiral, as seen both from the side and from
the top. The size of the stalk has been exaggerated so as to show
more clearly the positions of the leaves. The arrangement in (b)
can be called either a % or a & spiral, depending upon whether,

looking down from the top, we wind about the stem in clockwise
or counter-clockwise fashion. In other words, if in the first case
we make 2 revolutions in counting 5 leaves, then we make 2 revolu«
tion in passing from one leaf to the next. Consequently we nwst
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make £ revolution between leaves if we wind in the other direction.
To fix our ideas, we shall agree to take the longer path and call
this a £ spiral. Then the arrangement shown in (c)isa §-nota ¢

(o)

F1a. 21, The arrangement of leaves on a stalk

~ spiral. Similar arrangements can be observed in a wide variety
of plant growth ~ in pine cones, in the petals of a flower, in the
leaves of a head of lettuce, and in the layers of an onion, to name
but a few examples.?

Note that the ratios with which we have been working - %, &, §,
and so on - are ratios of successive terms of the Fibonacci series. In
order to study the significance of these ratios, we must turn back
a couple of thousand years to the ancient Greek geometers. They
were much interested in what they called the ‘golden section’, or
the division of a line in mean and extreme ratio, The point B of
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Figure 22 is said to divide the line AC in mean and extreme ratio
if the ratio of the shiorter segment to the longer is equal to the
ratio of the longer segment to the whole line - that is, if AB/BC

) ) , %
F1a. 22. The golden section: AB/BC=BC[AC

=BC[AC. It can be shown algebraically that either of these ratios
has the numerical value (v/5 - 1)/2, which, to six decimal places,
is equal to -618034. In other words, AB/BC =BC[AC =-618034.
Let us denote this ratio by R.

Now return to the Fibonscci series and consider the ratio of any
term to the succeeding term, The following table gives the values
of the first twelve of these ratios, calculated to six decimal places.

O  1/1=1000000 @  1/2=-500000
(B)  2/3= 666667 @  3/5=-600000
(5  5/8= +625000 ©  8/13=-615385
() 13/21= 619048 (8 21/34=617647

(©) 34/55= 618182 (10) 55/89 =+617978
(11) 89/144 = 618056 (12) 144/233 =+618026

Y
*618034 618034

The arrows indicate what is intuitively evident - that the column
on the left consists of numbers which approach R through values
greater than R, while the column on the right consists of numbers
which approach R through values less than R, Consequently the
Fibonacci series provides a sequence of whole numbers whose sue-
cessive ratios-are more and more nearly equal to the ratio R of the
golden section,

Consider next the rectangle shown in Figure 23(a). The dimen-
sions of this rectangle have been so chosen that the ratio of the
width to the length is R. That is, /L =+618034, or W =-618034L.
If this rectangle is divided by a line into a square and a rectangle,
as in diagram (b) of the same figure, the new rectangle is again
one in which the ratio of the dimensions is R, Figure 24 shows the
result of the continued division of each successive rectangle into
a square and a rectangle, and shows also how a curve can be
inscribed in the successive squares. This curve is known in
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mathematics as a ‘logarithmic spiral’.? Remarkably enough, it is
just the kind of spiral frequently found in the arrangements of seeds
in flowers, in the shells of snails and other animals, and in certain

L

(a) ®)

Fio. 23, The 618034 rectangle and its division into a square and
a second *618034 rectangle

cuts of marble, (It is true that a logarithmic spiral can be inscribed
in any.rectangle, but the construction is not as simple as in the
case discussed here. A second reason for introducing the spiral
through this particular rectangle is that the rectangle itself will be

mentioned shortly in another connexion.)

N | 1/

F1a. 24, Further division of the ‘618034 rectangle into squares, and
the inscribed logarithmic spiral

One of the best examples of the occurrence in nature of the ratio
R is to be found in the head of a sunflower, shown diagrammatic-
ally in Figure 25. The seeds are distributed over the head in spirals
which radiate from the centre of the head to the outside edge, un-
winding in both clockwise and counter-clockwise directions. De-
tailed study of these spirals has resulted in the following conclu-
sions:

(1) The spirals are logarithmic spirals.

(2) The number of clockwise spirals and the number of counter-
clockwise spirals are successive terms of the Fibonacci series; and
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thus the ratio of the smaller of these numbers to the larger is what
appears to be nature’s best possible approximation to the ratio R
of the golden section,

The normal head -5 to 6 inchesin diameter - will generally have
34 spirals unwinding in one direction and 55 in the other. Smaller
heads may have 2 or i} combinations, and abnormally large
beads have been grown with 3% combinations. The same pheno-
mena can be observed, although perhaps not so easily, in the heads
of other flowers, such as daisies and asters.

F1a. 25, Distribution of seeds in a sunflower head

So much for the relation of the Fibonacci series to nature, What
of its relation to art? It is said that psychological tests have estab=
lished the fact that the rectangle most pleasing to the eye is the one
shown in Figure 23 ~ that is, one in which the ratio of the dimen=
sions is R. This rectangle, together with the associated logarithmic
spiral, is fundamental in the technique of what has come to be
called ‘dynamic symmetry’. The development of the technique is
chiefly the work of Jay Hambidge, who first made an intensive
study of its use in the design of Greek pottery, and then extended
it to sculpture, painting, architectural decoration, and even to
furniture and type display.t Dynamic symmetry has been used ex-
tensively by a number of artists, among them George Bellows, the
well-known American painter.

The apparent aesthetic appeal of dynamic symmetry is perhaps
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due in part to the fact that the ratio -618034 is so universal a con-
stant in nature. Is it because we, who are the judges of aesthetic
appeal, are ourselves a part of nature? We had better leave that
question to the philosopher and the psychologist, and get on with
our own business.

SOME ‘CIRCULAR’ PARADOXES

Consider the two equal circular discs, 4 and B, of Figure 26.
If Bis kept fixed and A is rolled round B without slipping, how
many revolutions will 4 have made about its own centre when
it is back in its original position? The answer, if obtained with-
out the aid of actual discs, is almost invariably incorrect. It is

-
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Fi6. 26. Rolling a disc about an equal dis¢

generally argued that since the circamferences are equal, and since
the circumference of 4 is laid out once along that of B, 4 must
make 1 revolution about its own centre. But if the experiment is
tried with, say, two coins of the same size, it will be found that 4
makes 2 revolutions. This fact can be shown diagrammatically
as follows:

In Figure 27, let P be the extreme left-hand point of 4 when A
18 in its original position. A moment’s thought will make it clear
that when 4 has completed half its circuit about B, the arc of the
shaded portion of 4 will have been laid out along that of the shaded
portion of B, and P will again be the extreme left-hand point of 4.
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F10. 27. The rolling disc at the half-way point

Hence 4 must have made 1 revolution about its own centre. The
same argument holds for the arcs of the unshaded portions of 4
and B when 4 has completed the second half of its circuit about B.

*

Similar difficulties are encountered in the problem of a slab sup-
ported by rollers -a device frequeritly used in moving safes, houses,
and other heavy objects.

If the circumference of each roller in Figure 28 is 1 foot, how
far forward will the slab have moved when the rollers have made
1 revolution? Again the usual argument is to the effect that the
distance moved must be equal to the circumference of the rollers,
or 1 foot. And again the correct answer is not 1 foot, but 2 feet.

OO0

F1G. 28. The slab-and-roller problem

For suppose we resolve the motion into two parts. First think
of the rollers lifted off the ground and supported at their centres.
Then if the centres remain stationary, 1 revolution of the rollers
will move the slab forward 1 foot. Next think of the rollers on the
ground and without the slab. Then 1 revolution will carry the
centres of the rollers forward 1 foot, If now we combine these two
motions, it should be evident that 1 revolution of the rollers will
carry the slab forward a distance of 2 feet.

»
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In moving heavy objects by means of a slab and rollers, would it
be possible to use rollers whose cross-sections are not circles, but
some other sort of curve? In other words, are circles the only
curves of constant breadth? The intuitive answer is yes; the correct
answer is no.

By a curve of constarit breadth we shall mean exactly what the
slab-and-roller idea implies. That is to say, if sucha curveis placed
between and in contact with two fixed parallel lines, then it will
remain in contact with the two fixed lines regardless of how it is
turned,

The simplest curve of constant breadth — apart-from the circle -
is shown in Figure 29(a). To construct if, first draw the equilateral
triangle ABC and denote the length of each of its sides by . With
A as centre, and with radius », draw the arc BC. With B as centre,
and with radius r, draw the arc CA4. Finally, with C as centre, and
with radius #, draw the arc AB. This curve can be made smooth by

(@)
Fi1c.29. Curves of constant breadth

prolonging the sides of the triangle any distance — say s — as in
Figure 29(b). Here the arcs DE, FG, and HI, with centres at 4, B,
and C respectively, are all drawn with radius s; and the arcs EF,
GH, and ID, with centres at C, 4, and Brespectively, are all drawn
with radius r+s.

In Figure 30, the second of these curves isshown placed between
two fixed paralle] lines. It is evident from the figure that the curve
will remain in contact with the two lines regardless of how it is
turned, for the distance PQ between the highest and lowest points
of the curve is always the sum of the two constant radii, s and
r+-s, and so is always the same.
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It is well to note that although any roller whose.cross-section is
a curve of constant breadth can be used in place of a circular roller
for the moving of objects on a slab, a wheel in the shape of either
of the curves of Figure 29 could never be used in place of a circular
cart-wheel or a circular gear. For these curves have no real centres
= no point, that is, which is equi-
distant from all points on the curve.
The circle is the only curve which
has this particular property.

Curves of constant breadth need
not be regular in shape, as were the
two just examined. The irregular
curve of Figure 31 is constructed as
follows: with A4 as centre, and with
any radius 4B, swing arc BC, With
Cascentre, and with the same radius
(theradiusremainsconstantthrough- gy, 31. An irregular curve of
out), swing AD. With D as centre, constant breadth
swing CE. With E as centre, swing
DF, With F as centre, swing EG. With B as centre, swing AG. (G
is the point of intersection of the last two arcs.) Finally, with G as
centre, swing FB. This curve has corner points which can be
rounded off by extending the lines AB, AC, and the like, as was
done in the transition from diagrams (a) to (b) in Figure 29.5

*

Thelarge circle of Figure 32 has made 1 revolution in rolling, with~
out slipping, along the straight line from P to Q. The distance PQ
is thus equal to the circumference of the large circle. But the small
circle, fixed to the large one, has also made 1 revolution, so that
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t13e distan?e RS is equal to the circumference of the small circle,
Since RS is equal to PQ, it follows that the circumferences of the
two circles are equal!

Q.

P

F1a6.32

This puzzling contradiction, which dates back to the seventeenth
century,® can be explained by the fact that although the large circle
rolls without slipping, the small one “slips’ in a certain sense. This
behaviour can be made clear by thinking of the circles as wheels,
securely fastened together, and running on tracks as shown in
Figure 33. If track & is lowered so that it does not touch wheel B,
then 1 revolution of the system on track a will carry the common

EY)
al }
Fic. 33

centre forward a distance equal to the circumference of A If, on
the other-hand, track a is lowered so that it does not touch wheel
A, then 1 revolution of the system on track b will carry the com-
mon centre forward a distance equal fo the circumference of B,
Finally, suppose that each wheel rests on its corresponding track,
Now the circumferences of the two wheels are certainly not equal,
Consequently, if wheel 4 rolls on_track a without slipping, there
must be some slipping between wheel Band track b. And if Brolls
on b without slipping, there must be some slipping between 4 and
a. It follows that if.each wheel were geared to its tracks, motion

would be impossible.
A further explanation of the paradox involves the notion of a
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curve called the “cycloid’. This curve, shown in Figure 34, is the
path traced by a fixed point M on the circumference of a circle as
the circle rolls, without slipping, along a straight line,

F1a. 34. The cycloid

A fixed point N inside the circle describes what is known as a
‘curtate cycloid’, or sometimes a ‘trochoid’.

F1a. 35. The curtate cycloid

Returning to the problem of the two unequal circles, think of
the motion of a fixed point M on the circumference of the large
circle, and that of a corresponding point N on the circumference
of'the small circle. As the large circle rolls from P to Q, M describes
acycloid, and N a curtate cycloid. A glance at Figure 36 makes it

M

P Q
Fi10. 36

evident that although each wheel makes only 1 revolution, the
point M travels considerably farther than the point N. Only the
common centre of the circles travels a distance equal to the straight
line PQ.

*
The cycloid has a number of remarkable properties, of which we
note the following three,
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(1) The length of one arch of a cycloid is equal to the perimeter
of a square circumscribed about the generating circle,
R

[2] a B

F1a. 37. The cycloidal arch PRQ is equal in length to the perimeter of the
square ABCD; the area of the shaded region under PR is three times that of
the shaded circle

C

(2) The area under one arch of a cycloid is equal to three times
the area of the generating circle.

(3) The ‘path of quickest descent® between two points is the are
of a cycloid. For example, suppose that A and B of Figure 38 are
two points not in the same horizontal plane, and suppose that two

A

B

F1a. 38. A cycloidal arc is the path of quickest descent

spheres are released simultaneously at 4 and allowed to roll from
A to B. If the first rolls along a plane, and the second along a sur-
face in the shape of an inverted cycloid, the second will arrive at B
before the first, in spite of the fact that its path is longer and that
it has to roll uphill before it gets to B. It can be shown further that
if the plane from A to B is replaced by a curve of any other shape,
the sphere which rolls along this surface will always arrive at B
later than the one which rolls along the cycloid.

This problem of the path of quickest descent, traditionally known
as the ‘brachistochrone problem’, was proposed to Jacob Bernoulli
by his brother Johannes (see p. 178) in 1696, It was not long before
the methods devised for the solution of the problem developed
into what is now called the ‘calculus of variations’ — an important
branch of mathematics dealing with all sorts of extremal problems,
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A third member of the cycloid family is the ‘prolate cycloid®,
This curve is the path traced by a fixed point O outside the rolling -
circle, but attached to it. Figure 39 shows that as the circle rolls to

oY v -
F16. 39. The prolate cycloid

the right, the point O moves to the left during a small part of its
Jjourney. It can thus be said that no matter how fast a train is mov-
ing forwards, certain parts of the train — points on the flanges of
the wheels — are moving backwards!

Incidentally, a nice paradox exists
in connexion with the naming of the
curtate and prolate cycloids, We have
Iabelled Figures 35 and 39 in accord-
ance with the definitions given in
the Encyclopaedia Britannica (14th
edition, 1939). But according to
Webster’s New International Diction-
ary (2nd edition, 1934), what we have
called a curtate cycloid should be s
called a prolate cycloid and vice versa. F1. 40. The hypocycloid
In view of the fact that ‘curtate’ is derived from ‘curtus’
meaning ‘short’, and ‘prolate’ from ‘prolatus’, meaning ‘pro-
longed’, the terminology we have adopted would secem to be the
obvious one, in spite of Webster.

One other type of cycloid also deserves mention. The ‘hypo-
cycloid’ is the path of a fixed point P on the circumference of a
circle which rolls around the interior of a larger, fixed circle.

If, as in Figure 41(a), the radius of the rolling circle is half that
of the fixed circle, the point P simply moves back and forth along
the diameter AB. Here, then, is a device by which circular rhotion
can be transformed into straight-line motion. Figure 41(b) shows
the centre C of the rolling circle attached to a revolving disc D,
and a rod attached to the rolling circle at P. The rotation of the
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s

¥1a. 41. Transforming circular motion into straight-line motion

disc D causes the small circle to roll about inside the large circle
(which remains fixed), and this rotation in turn causes the rod to
move back and forth in a straight line,

TOPOLOGICAL CURIOSITIES

Let us think for a moment of the shape of a quoit, or anchor-ring,
Is that part which constitutes the hole inside or outside the ring?
We generally avoid the wordy phrase used here and speak of ‘the
hole in a ring’, implying, however unconsciously, that it is inside.
But is the inside really inside or outside? If we go on to debate the
question without first settling upon some sort of definition of ‘in-
side’ and *outside’, our argument is likely to be quite fruitless.

The problem of what constitutes the inside and the outside of a
ring is the concern of the student of ‘topology’ or ‘analysis situs®
(literally, the analysis of situation, or position). Ordinary plane and
solid geometry are essentially quantitative, dealing as they do
with the sizes of things — the lengths of lines, the areas of surfaces,
and the volumes of solids. Topology, on the other hand, is a kind
of geometry which ignores sizes and concentrates on such qualita-
tive questions as whether a certain point is inside, on, or outside &
certain closed curve or surface.

To be more specific, consider the circle shown in Figure 42, The
student of plane geometry isinterested in such things as the number
of inches in the circumference of the circle, or in the number of
inches in the distance from the centre O to the point P, or in the
number of square inches in the area of the circle. The topologist,
on the other hand, is interested in this sort of question: The point
P is inside the circle, the point Q on the circle, and the point R
outside the circle. Now suppose the circle is drawn on a sheet of
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rubber and then stretched and distorted in any way, shape, or man-
rier - provided it is not torn. Does P still lie inside the curve? Does
Q still lie on the curve? Does R still lie outside the curve? The
answer to all three of these questions is obviously yes, but this
problem is an elementary one,

The science of topology is relatively young. The first systematic
work in the subject appeared about the middle of the nineteenth

O

The same circle distorted
Fi1a, 42

century. But in 1736, over a hundred years earlier, Euler published
the first single result of any topological consequence. Let us look
at his problem.”

In the German town of KOnigsberg ran the river Pregel. In the
river were two islands, connected with the mainland and with each
other by seven bridges, as shown in Figure 43. A frequent topic of

FP106. 43. The bridges of Konigsberg

conversation in the town was whether or not it was possible for a
person to set out for a walk from any point in the town, cross each
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bridge once and only once, and return to his starting-point. No one
had ever found a way to do this, but on the other hand, no one had
ever been able to prove that a way did not exist. Euler heard
of the problem and went about its solution in a systematic manner.
He noted — and here the topological method creeps in — that the
problem is unchanged if the somewhat complicated figure above
is replaced by the simple diagram in Figure 44. Then the original
problem is equivalent to this: is it
possible to start at any point and
trace this diagram with a pencil
without lifting the pencil from the
paper without retracing any por-
tion of the diagram? Euler proved
not only that this is impossible,
but went on to establish additional

51 J* results for diagrams of a more

6 general nature. Incidentally, the

Cc diagram above can be traced in

F1c. 4. The Konigsberg the manner indicated if the bridge
problem simplified BD is replaced by one from 4

to C.

Euler’s problem can hardly be called paradoxical, but there are
two reasons why it was worth discussing. First, it gives us some
idea of the topological method, whereby a complicated diagram is
replaced by a simple one. In the second place, it indicates the gen-
eral nature of a topological problem - one in which the essentials
are unchanged by any distortion of the figure. But now, instead of
going any further into a technical development of the subject, we
shall look at some of the weird and startling problems which arise
in it. For the most part we shall be dealing with what we always
thought were simple ideas — ideas about which our intuition has
never before led us astray. Perhaps it will become clear how un-
reliable a guide intuition can sometimes be.

*

The curvein Figure 45 is a complicated-looking affair, but a mathe-
matician would call it a *simple closed curve’, for it never crosses
itself, and it divides the plane in which it lies into two parts, one
inside the curve and the other outside. Topologically speaking, it
is equivalent to a circle, for it can be transformed into one by
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proper stretching, Figure 46, on the other hand, shows a closed
curve which is not simple. At first thought we may be tempted to.
say that this curve divides the plane into an inside, consisting of
the regions I and X, and an outside, O. But not so fast! Let us re-
turn for 4 moment to Figure 45. If we start at any point of the

0

F1G. 45. A simple closed Fi16. 46. A closed curve that
curve is not simple

inside, I, and follow a path which cuts the curve at any one point,
we shall find ourselves at some point of the outside, O. This cor-
responds roughly to our intuitive idea of what constitutes the in-
side and the outside of a curve. Now, in Figure 46, if we start any-
where in Jand follow a path which cuts the curve anywhere except
between the points a and b, it is true that we find ourselves at some
point of O. But what if our path cuts the curve between a and b, so
that we arrive in X7 If X is outside the curve we ought to be able
to get from X to O without again crossing the curve. And if X'is
inside the curve, we should have been able to get from Ito X with-
out crossing the curve the first time. Hence, relative to J, theregion
X is neither inside nor outside the curve,

*

So far we have been working with one-dimensional curves on a
two-dimensional surface, We shall now step everything up one
dimension and consider a similar problem involving two-dimene
sional surfaces in three-dimensional space.

A sphere is a good example of a ‘simple closed surface’ - a sur-
face which divides all of space into two regions, one inside the
sphere and the other outside. If we start at any point of the inside,
1, and follow a path which cuts the surface at any one point, we
arrive at the outside, O, as in Figure 47(a).

The surface whose cross-section is shown in Figure 47(b) is
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constructed by taking a hollow sphere, soldering a hollow pipe to
the outside of the sphere at A4, cutting a hole in the sphere at B,
and here soldering the other end of the pipe to the sphere. Thus the

(

) )
F1c. 47

0 0

pipe is closed at 4, and opens into the sphere at B. The surface
formed by the sphere and the pipe is certainly a closed surface, but
it is no longer a simple one. For what constitutes the inside, and
what the outside? If we start from any point of 7 and follow a path
which cuts the sphere anywhere except in the circle at 4, we arrive
at O. But if our path cuts the sphere in the circle at A, we follow
thepipe aroundand again find ourselvesinside the sphere. And if we
follow the same path in reverse order, we are still inside the sphere.

This problem is considerably more bafifling than that of the
curve in Figure 46. There we might at least have said that the curve
has two separate insides, Jand X, and one outside, O. But here the
sphere and the pipe cannot be thought of as separate insides, for
although they are separated at A, they run into one another at B.
The best we can say is that the surface has an inside and an outside
except for the small portion of the sphere at 4.

Now look at the surface — called ‘Klein’s bottle’ - shown in
Figure 48. We can construct this surface by taking one end of a
hollow glass tube, bending it round, inserting it through a hole in

(0

/

F16. 48. *Klein’s bottle’ - a closed surface with no inside
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its side, and welding the two open ends together. The resulting
surface is a closed surface, being unbroken in the usual sense at
any point. For example, Figure 49(a) shows the cross-section of
an ordinary bottle. This surface is an open one, being broken at
the neck. Figure 49(b), on the other hand, is a cross-section of the
surface of Figure 48. This surface has no break like that.at the
neck of the bottle. To repeat, it is a closed surface. (In all cases, of
course, the glass must be thought of as a true surface ~ one with no
thickness.)

() ()
F16. 49

Suppose we start anywhere and follow a path which cuts the
surface at any one point. We can, without again cutting the sur-
face, return to the place from which we started. In other words, no
matter where we penetrate the surface, we are still outside of it.
This closed surface therefore has no inside whatever I®

*

Most of the surfaces met with in everyday life are bilateral’, or
two-sided.. A sheet of paper, for example, has two sides, If a fly
were placed on one side, he could get to a point on the other side
only by cutting through the paper — how a fly could do this is be-
side the point — or by going over the edge. A sphere is a closed
bilateral surface. The fly could crawl all over the outside, and could
get to the inside only by going through the surface. But the closed
surface of Figure 48 is’ ‘unilateral’, or one-sided. A moment’s
thought will make it clear that the fly could crawl from any one
point to any other point without the inconvenience of cutting
through,

Let us consider a simpler example of a unilateral surface —~ one
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which is somewhat easier to construct. First take a long, narrow,
rectangular strip of paper, and paste the ends together as shown
in Figure 50. The result is a cylindrical surface which has two sides
and two edges. We shall refer to this strip as Sj.

F1G. 50, An ordinary cylindrical F1a. 51. The Mobius strip (Sp)
strip (Sp

Now, before pasting the ends of a similar strip together, give
one of them a half-twist - a twist through 180°, that is. The result-
ing surface, called a ‘*MG&bius strip’, is a one-sided surface with
only one edge. An attempt has been made, in Figure 51, to show
what this surface looks like, but you had better actually construct
one if you want to study its properties in detail. To convince your-
self that it has only one side, start at any point and draw a line
down the middle. Keep on drawing, without lifting the pencil from
the paper, until you return to the point from which you started.
You will find that the single line has completely traversed what
constituted, before the ends were pasted together, the two sides of
the original rectangular piece of paper. And to convince yourself
that the M6bius strip has only one edge, start at any point of the
edge and follow it round, without crossing the paper, until you
are back where you started.
Again, you will find that you
have completely traversed
what constituted, before the
ends were pasted together, the
two long edges of the original
rectangular piece of paper.
We shall, for convenience, call

F1G. 52. The Strip S, the Mbius strip So.

Finally, if one of the ends is
turned through a full twist (through 360°) before pasting, the
resulting surface, like S1, has two sides and two edges. We shall
refer to this strip, illustrated in Figure 52, as S3.
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And now get out your scissors, for we have more to do. Suppose
we cut the bilateral strip 5 along a line midway between the edges.
It is not difficult to see that we obtain two separate strips, identical
with the original one except that they are only half as wide, But
what if we cut the Mobius strip S» in the same manner? Anyone
who can predict the result before actually carrying out the experi-
ment must have better than average intuitive powers. For the re-
sult is a single strip - not two — twice as long and half as wide as
the original one. Furthermore, it is no longer unilateral, but is a
bilateral strip of the type S3. And what if this strip .3 is cut down
the middle? Here the result consists of two interlocked surfaces
of the type S, each of them equal in length to the stnp from which
they were cut, and half as wide.?

For a final surprise, take a new strip 5> — the unilateral Mobius
strip ~ and cut it along a line which runs parallel to the edge and a
third of the width of the strip from the edge. Keep cutting until
you are back at the starting-point. The result? Two interlocked
surfaces, one equal in length to the original strip, the other twice as
long. The shorter one is again of type S», the longer one of type Ss.

Try the experiments described and invent variations of your
own. Predicting the results will give your intuition good practice.

*

Much of the early work in topology was concerned with the study
of knots. As a matter of fact, anyone who has ever played with
those puzzles consisting of interlocked wires, nails, rings, or strings
can claim to have been, in a small way, a topologist.

When is a closed curve knotted and when is it not knotted? A
piece of string with the ends tied together will do nicely fora closed
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curve. Then the curve, or string, is not knotted if it can be trans«
formed into a single simple closed curve (see pp. 70-1) without
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cutting and retying. Otherwise it is knotted, For example, Figure
$3(a) shows a string which is actually unknotted, while diagram (b)
of the same figure shows one which is knotted in the simplest
possible way.

Our discussion of the Mobius strip and its various relatives can
be put in terms of knots as follows.

The two edges of a strip of type Sy are neither knotted nor inter-
locked. This strip, cut down. the middle, falls into two separate

parts.

The single edge of a strip of type Sz is not knotted. This strip,
cut down the middle, becomes a single unknotted strip of type Ss.

The two edges of a strip of type 3 are interlocked, but not
knotted. When this strip is cut down the middle, it falls into two
interlocked strips.

If one end of the strip is turned through three half-twists (or
540°) before pasting, the resulting surface - call it Sy —has one side
and one knotted edge. For if
this strip is cut down the middle,
asingle strip is obtained, asina
strip of type S», but in this case
the strip itself is knotted. Asa
matter of fact, the knot is of
the type shown in Figure 53(b).

There are many examples of
paradoxes which arise in the
study of knots. The reader who
is interested further in the subject is referred to other works10
We shall content ourselves with a description of only two more

Fi16. 54. The strip S

" examples — both of them rather popular tricks.

* The first concerns our friends 4 and B, who appear in Figure 55.
They are tied together in the following way. One end of a piece of
rope is tied about A4’s right wrist, the other about his left wrist. A
second rope is passed around the first, and its ends are tied to B’s
wrists. How are 4 and B to free themselves without cutting one of
the ropes? No amount of climbing in and round each other’s rope
will do it, but the solution is simple. B takes up a small loop near
the middle of his own rope, passcs it under the loop round 4’s
right wrist — on the inside of the wrist and in the direction from
elbow to hand — and slips it over A’s hand. He then passes it again
under the loop round A’s wrist — this time on the outside of the
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wrist and in the direction from hand to elbow -~ and behold, his
own rope can now be pulled free.

Fia. 55. The escape-artist’s trick

The second of our two tricks has to do with the system of appar-
ently interlocked loops and surfaces consisting of @ man, his waist-
coat, and his coat. We should probably say offhand that it is
impossible for a man to take off his waistcoat without first remov-
ing his coat — without, that is, slipping his arms. out of his coat-
sleeves. But you, or anyone else, can do it by following these
directions. Unbutton the waistcoat and coat. Grasp the end of the
left-hand sleeve and the lower left-hand corner of the-coat firmly
in the left hand and put that hand and arm through the left arm-
hole of the waistcoat, from outside to inside. This operation leaves

_ theleft armhole free, and over the left shoulder. Pull the waistcoat
round behind the neck. Now grasp the end of the right-hand sleeve
and the lower right-hand corner of the coat firmly in the right hand
and put that hand and arm through the left armhole, again from
outside to inside. This operation leaves the waistcoat attached to
the body only by the right arm, which is now through both arm-
holes of the waistcoat. Finally, pass the waistcoat down the inside
of the right coat-sleeve and out at the end.

Use an old suit! .

A number of topologists have spent a great deal of time and energy
on the ‘four-colour problem’, Experience has taught mapmakers,
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both amateur and professional, that only four colours are needed
to distinguish between the different countries of a plane or spheri-
cal map. Let us turn cartographers for 2 moment and look at a few
examples of plane maps,

A piece of land occupied by one, two, three, or four countries
can obviously be taken care of with four colours or fewer. Perhaps
we had better put one possible misunderstanding out of the way
before it arises. It may be argued that we need seven colours for
the map in Figure 56. But one of the conditions of the problem is
that two countries may be coloured the same if they touch only at
oné point — not, however, if they touch along a line. Thus in the
map under consideration we can do with three colours, indicated
in the figure by three distinctive shadings,

Now consider Figure 57, which shows four countries each of
which touches the other three. It is evident at once that four colours
are necessary for the colouring of this map. No one, however, has

yet been able to draw a map of five countries, each of which touches
the other four.
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F1G. 56. Three colours suffice for Fro. 57, Four colours are necessary
this map of seven countries for this map of four countries

Here is an excellent example of what are known as necessary and
sujficient conditions in a mathematical problem. The map of Figure
S7furnishes proof of the fact that four colours are necessary. Yet the
mere fact that no one has ever found a map for which four colours
are not sufficient does not prove that four colours are sufficient.

Although it is suspected that four colours are sufficient, the best.
result which has been proved to date is that five are sufficient, It is
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remarkable that although the problem has been solved only in part
for such simple surfaces as the plane and the sphere, it has been
solved completely for much more complicated surfaces. For ex«
ample, it has been proved that seven colours are both necessary
and sufficient for the colouring of 2 map on a ‘torus’ — a quoit, or
anchor-ring. An attempt is made in Figure 58 to show a torus upon
which seven regions, each of which touches the other six, have
been laid out.*

The four-colour problem has fired the imagination and enthusi-
asm of many a mathematician. Scarcely a month goes by but that
some mathematical journal or other carries an article either on the

F1a. 58. The *seven-~colour problem’ of the torus

problem itself, or on problems which have arisen out of it. The
real problem - that of the sufficiency of four colours for a plane or
spherical map - is still an open question.

*

We must not conclude, from what we have seen in our brief ex-
cursion into topology, that it is a subject made up entirely of use-
Iess, though interesting, games and puezles. The introduction of
topological methods has brought about startling advances not only
in other branches of mathematics but in physics and chemistry as
well. And to mention only one of the applications of topology to
industry, the Bell Telephone Laboratories have found a use for it
in the classification of electrical networks, No one dares prophesy
the ultimate usefulness of topology ~ it is as yet too young a science,
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CHAPTER FIVE

Algebraical Fallacies

MosT of the paradoxes of the previous three chapters were para-
doxical in that they appeared to be false ~ or at least highly im-
probable - yet were actually true. In this chapter and the next we
shall consider some results in algebra and geometry which appear
to be true, yet which are actually false. Paradoxes of this type
might better be called ‘fallacies’, since they are the result of fal-
lacious logical reasoning.

The very nature of the problems to be considered in Chapters 5
and 6 necessitates the use of the more formal techniques of algebra
and geometry. It may well be that a number of readers will not
find these two chapters as exciting as Chapters 7, 8, and 9. Such
people can skip Chapters 5 and 6 if they wish, although some of
the material developed in these chapters will be used later on. At
any rate, we shall try to keep in mind the fact that many of us have
not seen the inside of a classroom for years, and for this reason we
shall generally discuss in some detail the finer points upon which
any particular argument may be based.

Whenever there are groups of fallacies which involve the same
error — such as division by zero, to name one of the most common
- only one example of each group will be explained in full. The
remaining examples of the group will then be enumerated either
without explanation, or with at most a hint or two. This leaves the
satisfaction of exposing the difficulty to the reader, though the
complete solution is always available in the Appendix as a last

~ resort!
*

No doubt everyone will recall the axioms, or assumptions, which
are at the foundation of the study of arithmetic and which are con-
sequently essential to any mathematical argument having to do
with numbers. We probably remember them in some such sing-
song fashion as this: ‘ Equals plus or minus equals are equal ; equals
multiplied or divided by equals are equal; like powers or like roots
of equals are equal; things equal to the same thing are equal to
each other’; and so on. Let us have a look at some applications —
or rather misapplications — of these axioms.
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Paradox 1.
1 cat has 4 legs; )]

no (i.e., 0) cat has 3 legs. @)

Adding the *equals’ (1) and the ‘equals’ (2), we conclude that 1
cat has 7 legs.

Paradox 2,
2 pounds =32 ounces; (1)
%pound = 8 ounces. @

Multiplying the equals (1) by the equals (2), we obtain 1 pound
=256 ounces.

Paradox. 3.
1.0=2.0; 1)
0=0. )}
Dividing the equals (1) by the equals (2) gives 1 =2.
Paradox 4.
(-a)2=(+ap,

since the square of a negative quantity is positive. Extracting the
square root of both sides, we have —aq = -a.

Paradox 5,
% dollar =25 cents.
Extracting the square root of both sides of this expression gives
v/} dollar =v/25 cents,
or % dollar =5 cents,

Paradox 6. In attempting to solve the system of two equations
in two unknowns:
x+y=1,
+y =2’

we are forced to the conclusion that, since f and 2 are equal to the
same thing, they must be equal to each other — that is, 1 =2,
Where are the errors? Paradox | is too obvious to spend any
time on. As a matter of fact, we had to stretch our imagination a
little in order to get ‘equals’ out of the statements (1) and (2).
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In Paradoxes 2 and 5 we performed the operations of multiplica«
tion and root extraction only on the numbers, and not on the units
involved. Our conclusion in Paradox 2, for example, should have
been

1 (pound)? =256 (ounces)?2,

Now a ‘square pound’ is a rather difficult thing to visualize. It
would be clearer if we used feet and inches. Our argument would
then run as follows:

2 feet =24 inches; )
4 foot = 6 inches. 7))
Therefore 1 square foot =144 square inches - a result which is

evidently correct.

Paradox 3 reminds us rather forcibly of the fact that the axiom
concerning ‘equals divided by equals’ carries with it a rider to the
effect that the divisors shall not be zero. We shall have more to say
about this point before very long.

Paradox 4 recalls another item which may well have been for-
gotten. In extracting a square root, both the positive and negative
signs must be taken into consideration. That is to say, the expres«
sion in question yields the two correct identities -+ =--a and
~@a=—q, Here is another matter which will receive more attens
tion Iater on.

Paradox 6 shows us that the axioms cannot be applied blindly
to equations which are true only for certain values of the variables,
or unknowns. The values of x and y for which both the equations
(1) and (2) are true must be taken into account, and there are no
values of x and y for which x4y =1, and, at the same time, x--p
-2,

Another misuse of the axioms might be of some value in the fol-
lowing instance. Suppose a man is accused by his indignant wife
of having had too much to drink. He can maintain that it is un-
deniably true that a glass which is half full is equivalent to a glass
which is half empty. That is, ¥ full =% empty. But from this it
follows ~ by multiplying both sides by 2 ~ that full =empty, so that
every time our friend had drunk a full glass, he had had nothing
at all to drink! The chances for the success of this scheme are in=
versely proportional to the wife’s intelligence.

*
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Not only is it possible to observe the rules (after a fashion) and
come out with incorrect results, but, as any teacher of mathe-
matics will testify, it is often possible practically to annihilate the
rules and still arrive at the correct conclusion. For example, it is
quite true that if in the fractions ¢ and £ the sixes are cancelled
from the numerators and denominators, the resulting fractions,
and %, are correct. Again, the exponents in the numerator and
denominator of (1 +x)2/(1 - x2) can be cancelled, and the correct
result, (1 +x)/(1 - x), obtained. v

The same sort of illegal cancellation was once used in the fol-
lowing proof in plane geometry. As in Figure 59, the points P, O,
R, 0, and S are so marked off on a straight line that PO =0Q and

P 2 rR_9 g

F1a. 59

OR/0Q =0Q/0S.1tisthendesired toprove thatPR/RQ =PS/QS.
This result, it was argued, must be true; for if the R’s are cancelled
on the left of this Iast equation, and the $s on the right, the idene
tity P/Q =P/Q results! But P/Q =P/Q is of course meaningless,
since P and Q represent points, whereas PR and RQ are magni-
tudes.

%®
A type of examination question which has recently become popu-
lar — at least with the examiners ~ is this: ‘If x be diminished, in
what way does the fraction 1/x change?™* The student is expected
to answer that the value of the fraction increases, and the value of
the problem is supposed to lie in the fact that it tests the student’s
feeling for whatis known as * functional relationship’. The expected
reply appears reasonable enough, yet it leads to a contradiction if
no further restrictions are put on the values assumed by x. For
suppose x runs over the decreasing sequence

vy 5,3,1, -1, =3, -5, ...
Then the corresponding values of 1/x are
wecy %’ ‘3‘, 1: '—1, _'}9 "%; cee

Now it is true enough that 4 is greater than , that 1 is greater than
3, that — 1 is greater than —1, and that —2 is greater than —4,
But must we conclude that —~ 1 is greater than 17
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The difficulty arises from our failure to examine carefully all
possibilities before concluding that 1/x increases as x decreases.
. We probably thought of letting x run over a decreasing sequence
of positive numbers - such as ..., 5, 4, 3, 2, 1 — in which case the
value of 1/x does increase. It also increases if x runs over a de-
creasing sequence of negative numbers, such as -1, -2, -3, -4,
~5, .... These facts can be verified by 4 glance at the graph of 1/x,
shown in Figure 60, But the figure also shows that we cannot -
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F1a. 60. The graph of 1/x

conclude that 1/x increases as x runs over a decreasing sequence of
both positive and negative numbers — there is a gap in the curve as
x, in decreasing, passes through the value 0.

The same sort of negligence in defining carefully the range of
permissible values which the variable or variables can assume -
the ‘domain of definition”’, as it is frequently called — leads again
to the paradoxical result that — 1 is greater than 1 in the following
instance.?

Consider the proportion a/b =¢/d. It seems reasonable to assert
that if the numerator of the first fraction is greater than that of
the second, then the denominator of the first fraction must be
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greater than that of the second. That is, if a is greater than c, then
b is greater than d (as, for example, in the proportion 6/3 =4/2).
But now suppose that a =d =1, and b =¢ = — 1, Then the propor-
tion becomes 1/~ 1 = ~ 1/1, a proportion which is unquestionably
valid. But since the numerator 1 is greater than the numerator — 1,
we must conclude that the denominator —1 is greater than the
denominator 1. In other words, 1 is both greater than — 1 and less
than — 1! Here again we should have restricted a, b, ¢, and d to’
either positive numbers or negative numbers, not a mixture of both.

*
Almost everyone who has been exposed to elementary algebra has

at one time or other been exposed to a proof that 2 =1. Such a
proof is generally something of this sort:

Assume that
a=b. ¢))
Multiplying both sides by a,
a2 =ab, @
Subtracting 52 from both sides,
a2 —b2 =ab-b2, ®3)
Factorizing both sides,
(a-+b)a-b)=bla—-b). @
Dividing both sides by a— b,
a+b=b, )

If now we take a =b =1, we conclude that 2 =1. Or we can sub-
tract b from both sides and conclude that @, which can be taken as
any number, must be equal to zero. Or we can substitute b for @
and conclude that any number is double itself. Our result can thus
be interpreted in a number of ways, all equally ridiculous.

It may well be that we remember not only this sort of proof, but
also the point at which the error occurs. It is in step (5), where we
divided both sides by a — 4. Since ¢ and b were originally assumed
to be equal, we divided both sides by zero. Now why, you may
well ask, can’t we divide by zero? The answer involves the notion
of consistency, which we discussed briefly towards the end of
Chapter 1, There it was pointed out that the mathematician asks
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only that his axioms lead to no such contradictions as that 2 =1,
Let us look at this question in a little more detail.

Division in mathematics is defined by means of multiplication.
To dividé a by b means to find a number x such that bx =a, whence
x=afb, If b =0, there are two different cases to discuss: that in
which a is not zero, and that in which a is zero, Suppose we try to
determine x in each of these cases. In the first we have x =4/0, or
0.x =a. Now what number x, multiplied by 0, will give @, where
a is any fixed number (not equal to zero), such as 3, or — 5, or §?
Since any number multiplied by 0 is 0, there is 70 such number x.
In the second case, where a is zero, we have x =0/0, or 0.x =0,
Here any number x will do, since, as we have said, any number
multiplied by zero is zero. Now the mathematician requires that
the division of ¢ by b yield a definite, unique (‘single’ is meant
here — not ‘unusual’!) number as a result. And we have just seen
that division by zero leads either to #0 number or to any number.
Is it any wonder, then, that the mathematician has adopted the
rule which some teachers refer to as the Eleventh Commandment,
“Thou shalt not divide by zero*?

Here are some other fallacies, all based on the illegal operation
we have been discussing, Can you find the trouble yourself? (You
will find the solutions of all numbered paradoxes — Paradox 1,
Paradox 2, and so on — in the Appendix. This remark applies both
to this chapter and to the next.)

Paradox 1. To prove that any two unequal numbers are equal®
Suppose that
a=b+c, (1)
where a, b, and ¢ are positive numbers. Then inasmuch as g is
equal to b plus some number, a is greater than 5. Multiply both
sides by a—b. Then

a2—-ab =ab+ac—-b2-be. ©)
Subtract ac from both sides:
a2—ab—ac =ab—b2-be. (€)]
Factorize:
ala-b-c)=bla-b—c). (C))
Divide both sides by a~b— c. Then
a=b. )]
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Thus a, which was originally assumed to be greater than b, has
been shown to be equal to .

Paradox 2. To prove that all positive whole numbers are equal $
' By ordinary long division we have, for any value of x,

x-1

=i~b
x2-1
-x—-l——x+1,
x3-1

=x2+x+1,

x—1
X-1_ 31,2
=1 x34-x24-x+1,

xr—~1
x-1

=x* 1o b2 x4,

Now in all of these identities let x have the value 1. The right-hand
sides then assume the values 1, 2, 3, 4, ..., #. The left-hand sides
are all the same. Consequently 1 =2 =3 =4 =,,, =p,

Paradox 3. The following drgument shows how the axioms can
be violated and the corrected results still be obtained.s
Let x have the value 3, so that

x—1=2, 4 ¢))
Adding 10 to thé left-hand side only,
x+9 =2, ()]
Multiplying both sides by x—3,
x246x—27 =2x—6. 3)
Subtracting 2x — 6 from both sides,
x2+4x~21=0, @
Factorizing,
(x+7)(x—3) =0, ®)
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Dividing both sides by x+7, '

x—=3=0,0rx=3, ©)
which is the value originally assigned to x.

*

Division by zero is sometimes fairly well disguised. For example,
in the theory of proportions it is easy to establish the fact that if
two fractions are equal, and if their numerators are equal, then
their denominators are equal. That is, from a/b =a/c it can be in-

ferred that b =c. That this inference is not valid if 2 =0 can be seen
by running through the argument in the general case. Given

a_a
b ¢
Multiply both sides by bc. Then
ac =ab.
Divide both sides by a: .
c=b.

But if @ =0, then this last step involves division by zero.
Consider the following problem in this light.® It is desired to
solve the equation

x+5 . 4x—40
=7 9" 13=x" M

Combining the terms on the left-hand side,

xX+5-5(x—-7) 4x-40
x-7 13-x @
Simplifying,
4x—40 4x-40
7-x 13-x @

Now since the numerators in (3) are equal, so also are the denom-
jnators. That is, 7—x =13 —x, or, upon adding x to both sides,
7=13.

It may well be argued, ‘But how do we know that 4x —40, the
numerator on both sides of (3), is equal to zero?’ This question
brings up another point which was briefly noted at the beginning
of the present chapter. There it was pointed out that the axioms
cannot be applied blindly to equations without taking into con-
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sideration the values of the variables for which the equations are
-true. Thus equation (1), unlike the initial equations in Paradox 2
above, is not an identity which is true for all values of x, but is an
equation which is satisfied only for the value x =10. To verify this
statement, clear of fractions in (3), getting successively
(13 - x)(dx - 40) =(7 — x)(4x — 40),
(4x-40)(13 - x—7+x) =0,
24(x-10) =0,
x =10,
Consequently the only value of x for which the equation is true is
x =10, and this reduces the numerators in (3) to zero.
In the following three problems” we shall have occasion to use
certain properties of proportions. We recall them now for our

convenience.}f g =§, then it follows that
@) 2240
® L=l
© Tt

To prove the first, note that i 1?; =-, then, subtracting 1 from both

s1des, 7" 1 ==—— 1, whencep 9.
similarly.

T™3. The others can be proved

Paradox 1. Consider the proportion

x+1 x-1
a+b+1 a+b-1

Applying property (A), we have

x+1-(a+b+1) _x-1-(a+b-1)
a+b+1 at+b-1 ~°

or
x—a-b_x-a-b
a+b+1 a+b-1
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And applying property (B),
x+1 _ x-1
atb+1-(x+1) a+b-1-(x-1)
or
x+1 x-1

atb—x a+tb—=x

In the first result the numerators are equal. So, then, are the de-
nominators. Hence a+b+1 =a+b—-1, or +1 = -1, Inthesecond
result the denominators are equal. So, then, are the numerators.
Hence x+1=x-1,and again +1=-1,

Paradox 2. Suppose that
3x~b 3a-4b
3x—5b 3a~-8b
These fractions are obviously (2) different from unity. But if we
apply property (C) we must conclude that

3x—b—(3a—4b) 3x-3a+3b
3x—56=(a=8by “3x=3at3p ' b

is equal to each of the original fractions. That is to say,

3x-b _3a-4b_
3x—55 3a-8

1.

Paradox 3. Consider the proportions
x—atc b and X1¢ a+b

y—a+b ¢ y-+b a+c
Applying property (C) to each, we have
x-a=btc b x—a-btc_a+tb
y—a+b-c ¢ y—a+b—-c a+c
Hence b/c and (a+b)/(a-+c) are each equal to a third fraction
without being equal to each other.

*

Before we leave the subject of equations which are not identities,
let us look at an example or two of the way in which hidden con-
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tradictions in the equations can bring about contradictions in their
solution. We had the very obvious case at the beginning of this
chapter of the system of two simultaneous equations in two un-
knowns, x+y =1, x--y =2, It was pointed out at the time that

"}'

Q\?”

“~

F1G. 61. The graphs of x +y =1 and x +y =2 are parallel straight lines and so
have no points in common

there are no values of x and y for which x+y is equal to both 1
and 2 at the same time. A graphicalinterpretation of this statement
is given in Figure 61. But here is an example which is not quite so
obvious.

{2x +y=8; (¢)]

=27
x=2 5 (V3
Substitute (2) in (1). It follows that 4 —y+y =8, or 4 =8. To dis~

cover the trouble here it is only necessary to clear of fractions in
(2) and to add y to both sides. The system is then seen to be

2x 4y =8; QO
2%y =4, @
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Paradox. The following system of equations8 is of what is known
as the ‘homogeneous’ type. We follow the usual method of solv-
ing such a system.

{sz —3xy +y2 =d; ¢))
x2+2xy —3y2 =9, 2

Multiply both sides of (1) and (2) by 9 and 4 respectively. Since the
resulting right-hand sides are equal, so also are the resulting left«
hand sides. That is to say,

9(2x2 —3xy +y2) =4(x2+42xy — 3)2).
Simplifying,
2x2 = 5xy +3y2 =0,

Factorizing,
(2x=3y)(x~y) =0.

Now the product of two factors will be zero if either of the factors
is zero. Hence
2x-3y=0orx-y=0,

Each of these equations is to be solved simultaneously with either
(1) or (2). Substituting y =2x/3 in either, we obtain the correct
solutions x =3, y =2, and x=-3, y=~2. But if we substitute
y =x in (1), we get 0 =4; in (2), 0 =9,

*

Using an argument which involved division by zero, we have
already proved that any two unequal numbers are equal to each
other (Paradox 1, page 86). Here is a different proof of the same
proposition.®

Let a and b be two unequal numbers, and let ¢ be their arith~
metic mean, or average (for example, if a=2 and b =4, then
¢=[a+b}/2 =3). Then

—5—=¢or a+-b=2c, o
Multiply both sides by a—b:
a2~ b2 =2ac - 2bc. 02}
Add b2 - 2ac +c2 to both sides:
a2~2ac+c2 =b2-2bc+c2, (€))
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Both sides of (3) are now perfect squares and can be written in the

form
@-cR=0b-o2 @
Take the square root of both sides. Then
a-c=b-e, *)
or
a=>b. ©)

We started with the assumption that @ was nof equal to b and have
comie to the conclusion that a is equal to b.

The difficulty is again one which was mentioned briefly at the
beginning of this chapter. That is, in the extraction of a square
root both signs must be taken into consideration, and the one
which leads to a contradictory result such as ours must be rejected,
In passing from step (4) to step (5), only the positive signs were
used. Had we written (5) as @a— ¢ = — (b~ ¢), we should have ob-
tained our original expression, a+b =2c. The whole argument was
purposely made somewhat involveds It could have been done
more obviously in this manner:

a+b=2c,
a—c=c—b,
(a—c)2=(c-b)?,
'=(b— (_-)2,
a—-c=b-c¢,
a=b.

Paradox. To prove that n=n-1.19
For any value of n, the identity

(n+1)2 =n24+2n+1 )]
is true. Subtracting 2n+1 from both sides,
: (n4+1)2~Q2n+1) =n2. )
Subtracting #(2n+1) from both sides,
(n+1)2-Q2n+1)-nQn+1) =n2—-n2n+1). 3)
Adding (2n+1)2/4 to both sides,
(+12 =+ D@a+ 1) +Z T gy 41) 1 @ED?
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Both members are now perfect squares, and can be written

[ CT -

Extracting the square root of both sides,
n+l—(2";'1) =n..(2”;‘1), ©

or, adding (2n-+1)/2 to both sides,
n+l=n.

If we think hard enough, we shall perhaps recall that in addition
to the axioms concerning equalities, we once had to memorize a
number of axioms concerning inequalities. They went something
like this, did they not: ¢ Unequals plus or minus equals are unequal
in the same order; unequals multiplied or divided by equals are
unequal in the same order’; and so on? Did someone say that the
divisors must not be zero? Good. But does anyone remember any
other condition we put on that same axiom? Well, it’s going to
turn up in just a moment. But first let us recall the symbols used.
‘a>b’means ‘ais greater than b’; ‘a< b’ means ‘ais lessthan 5.’

Now, assume that # and a are both positive integers. Then

certainly 2n-1<2n. )
Multiply both sides by — a. Then
—2an+a< —2an. (VA
Add 2an to both sides: :
+a<0. 3

But this means that a, which we specified was positive, is negative.
Now does anyone remember that additional condition? It is to the
effect that the quantities by which we multiply or divide both sides
of an inequality shall be positive, and we multiplied by a negative
number in step (2). Try the next two problems yourselves.

Paradox 1. To prove that any number is greater than itself.
Assume that g and b are positive, and that

a>b. [¢))
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Multiplying both sides by 5,

ab>b2, ¢))
Subtracting a2 from both sides, and factorizing,
ab—-a)>G-+a)b-a). 3)
Dividing both sides by b-a,
a>b+ta. (©)

Then since b is positive, not only is @ greater than itself, but
greater than any number greater than itself!

Paradox 2. To prove that $>%.

We must make use here of the following property of logarithms:
nlog (m) =log (m)", We start with the inequality -

352, 0
Multiply both sides,by log (3). Then ,
, 3.log 3)>2.1og 3), @
o log 3% >1og (B2, ®
Whenes @>@2, or k>4

*

A number of fallacious results arise in connexion with imaginary
numbers - that is to say, square roots of negative numbers, The
term ‘imaginary” is unfortunate, but it is a term which has stuck
with such numbers since they were first introduced. Until the be-
ginning of the seventeenth century mathematicians worked for the
most part with positive numbers only, Negative numbers were
called ‘absurd’ and ‘fictitious®, and imaginary numbers were gen-
erally rejected as impossible. Actually, the number V' =T is no
more imaginary than the number — 1, which in turn is no more
imaginary than the number 1. The concept of number is a complex
one,* and we have no time to follow its complexities here, although
we shall do so, in a small way, in Chapter 7. But as far as practica=-
bility is concerned, imaginary numbers have been found to be in-
dispensable in such things as the development of communication
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by radio, telegraph, and telephone, and in the development of
modern electrical methods of prospecting for oil.

Imaginary numbers arose from the demand of the mathematic-
jan that the equation x2 =a should always have a solution. Thus,
f x2 =1 has a solution, why not x2 = — 1? The square root of —1
{s defined in the same way as the square root of any positive num-
ber. That is to say, v —1 is that number which, when squared,
gives — 1. (Compare with V4, or 2, which, when squared, gives 4.)
The square root of any negative number such as —a (where a is
positive) can be written as the real number, Va, times V' — 1, and
for convenience v —1 is usually denoted by Z Thus

Vv=a=v=1.Va=iVa.
Here we shall, for simplicity’s sake, restrict our attention to posi-

tive square roots.
A contradiction which every student runs into, when he is first

introduced to imaginaries, occurs when he attempts to apply to
them the usual rules for the multiplication of radicals. He has
learned that V'a.v'h =+ ab. For example, V'2.V3 =6, But this
gives
VTIANTT=VEDED =Vi=1g

whereas, by definition, v =1.v =1 =~1. Hence —1=+1. The
only way out of this difficulty is to agree not to apply the ordinary
rules for radicals to imaginary numbers. The difficulty is generally
avoided by writing i for V' — 1 and replacing i2, wherever it appears,
by —1, its true value by definition.

Paradox 1. A second proof that —1 = +1.12
We have, successively,

vV-1=v=], o
VT
Vi VT @
Vo1 Vi
VIivVi=v=1.v -1, @
1=-1 G
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Paradox 2. A third proof that —1 = +134

Consider the following, which is an identity for all values of x
and y:

Vi-y=ivy=x. )
Substituting x =a, y =b, ‘
Va-b=ivb=a. ¢
Substituting x =b, y =a,
Vib—a=iva=b. ©))
Multiplying (2) by (3),
Va-b.Vbi—a=i2.V6~a.va=b. @)
Dividing both sides by Va~b and Vb —~a
1=i2, ®)
or
1=-1,



CHAPTER SIX

Geometrical Fallaciés

TuE fallacies of geometry are more remarkable than those of
algebra in at least one respect, for the deception is not only of the
mind, but of the eye as well. The diagrams in Figure 18 at the
beginning of Chapter 4 showed how easy it.is for the eye to mis-
lead the mind. The examples in the last chapter furnished scant
material for the eye, but did reveal that care must be used if the
mind is not to lead itself astray. Formal deduction in geometry is
to some extent a combination of seeing and reasoning, for in the
proof of any theorem the logical processes of the mind are guided
by and checked against what the eye sees in the figure.

It may be of interest to note that Euclid compiled a collection
of exercises for the detection of fallacies, but unfortunately this
work has been lost.* .

As our first example of one type of fallacious geometrical reason-
ing we shall carry through a complete discussion of this remark-
able theorem:

To prove that any triangle is isosceles.?

Let ABC be any triangle, as in Figure 62(a). Construct the bi-
sector of / C and the perpendicular bisector of side 4B. From G,
their point of intersection, drop perpendiculars GD and GF to

Fi1G. 62(a)
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AC and BC respectively and draw 4G and BG. Now in triangles
CGD and CGF, /1= /2 by construction and /3 = /4 since all
right angles are equal. Furthermore the side CG is common to the
two triangles. Therefore triangles CGD and CGF are congruent —
can be made to coincide, that is. (If two angles and a side of one
triangle are equal respectively to two angles and a side of another,
the triangles are congruent.) It follows that DG =GF. (Corre-
sponding parts of congruent triangles are equal.) Then in triangles
GDA and GFB, /.5 and / 6 are right angles and, since G lies on
the perpendicular bisector of AB, AG =GB. (Any point on the
perpendicular bisector of a line is equidistant from the ends of the
line.) Therefore triangles GDA and GFB are congruent. (If the
hypotenuse and another side of one right triangle are equal re-
spectively to the hypotenuse and another side of a second, the tris
angles are congruent.) From these two sets of congruent triangles
~ CGD and CGF, and GDA and GFB - we have, respectively,

CD =CF )
DA =FB. )

Adding (1) and (2), we conclude that C4A =CB, so that triangle
ABC is isosceles by definition.

It may be argued that we do not know that EG and CG meet
within the triangle. Very well, then, we shall examine all other
possibilities. The above proof, word for word, is valid in the cases
wherein G coincides with E, or G is outside the triangle but so near
to 4B that D and F fall on CA4 and CB and not on C4 and CB
produced. These cases are illustrated in Figures 62(b) and (c).

There remains the possibility, shown in Figure 62(d), in which

and

F1a. 62(b)
99



3
5~

E /
A“‘*-—-__*:~~J/ Uy B
o
FiG. 62(c)
(24
B
’f \\ l/ /?’A
. ’ 4
/7
/ \ /
p}3 /4
ll~. /"
\\ . "f'
s\} ’/
G
Fic. 62(d)
C
2
7{8
A + B
Fia. 62(e)

100



GEOMETRICAL FALLACIES

G lies so far outside the triangle that D and F fall on CA and CB
produced. Again, as in the first case, triangles CGD and CGF are
congruent, as are triangles GDA and GFB. And again CD =CF
and DA =FB. But in the present case we must subtract these last
two equations in order to have CA =CB,

Finally, it may be suggested that CG and EG do not meet in a
single point G, but either coincide or are parallel. A glance at Fig-
ure 62(e) shows that in either of these cases the bisector CP of angle
C will be perpendicular to 4B, so that £ 7 = /8. Then /1= /2,
CP is common, and triangle APC is congruent to triangle BPC.
Again C4 =CB.

It certainly appears that we have exhausted all possibilities and
that we must accept the obviously absurd conclusion that all tri-
angles are isosceles. There is one more case, however, which may
be worth investigating. Is it not possible for one of the points D
and F to fall inside the triangle and for the other to fall outside? A
correctly drawn figure will indicate that this possibility is indeed
the only one. Furthermore we can prove it as follows.

_ Circumscribe a circle about the triangle ABC, as in Figure 62(f).
Since £ 1 = £2, CG must bisect arc AB. (£1and £2areinscribed

C
1\2

F1a. 62(f)

angles and, being equal, must be subtended by equal arcs.) But
EG also bisects arc AB. (The perpendicular bisector of a chord bi-
sects the arc of the chord.) It follows that G lies on the circum-
scribed circle and that CAGB is an inscribed quadrilateral. Now
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/.CAG+ /. CBG is a straight angle. (The opposite angles of an
inscribed quadrilateral are supplementary.) But if /CAG and
/.CBG were both right angles, D and F would coincide with 4 and
B respectively; so the conclusion that CD =CF (a conclusion es-
tablished in the first case) would reduce to C4 =CB, which is con-
trary to our hypothesis that ABC is any triangle. Consequently one
of the angles CAG and CBG must be acute and the other obtuse,
which means that either D or F (D in the figure) must fall' outside
the triangle and the other inside. The relations CD =CF and D4
=FB are true here, as they were in all of our. other cases. But
whereas CB =CF-+FB, we now have CA =CD- DA, not CD
+DA.

This discussion has been lengthy, but it should have been in-
structive. It shows how easily a logical argument can be swayed by
what the eye sees in the figure and so emphasizes the importance
of drawing a figure correctly, noting with care the relative posi-
tions of points essential to the proof. Had we at the start actually
constructed — by means of ruler and compasses - the angle bisector
and the various perpendiculars, we should have saved ourselves a
good deal of trouble.

The following five fallacies are all concerned with the same pit-
falls as the one we have just worked over in detail. Watch your
step!

Paradox 1. To prove that there are two, perpendiculars from a
point to a line?

Let any two circles intersect in Q and R. Draw diameters QP
and QS and let PS cut the circles at M and N respectively, as in
Figure 63. Then ~/PNQ and /. SMQ are right angles. (An angle
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inscribed in a semicircle is a right angle.) Hence QM and QN are
both perpendicular to PS.

Paradox 2. Toprove that aright angle is equal to an obtuse angle
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Fic. 64

Let ABCD be any rectangle. Following Figure 64, draw through
Baline BE outside the rectangle and equal in 1éngth to BC (hence
to AD). Construct the perpendicular bisectors of DE and AB.
Since these lines are perpendicular to non-parallel lines, they must
meet, as at P. Draw AP, BP, DP, and EP. In triangles APD and
BPE, AD =BE by construction. Also AP =BP and DP =EP. (Any
point in the perpendicular bisector of a line is equidistant from the
ends of the line.) Since the three sides of triangle APD are equal
respectively to the three sides of triangle BPE, these triangles ate
congruent. Hence

£.DAP= / EBP, ¢))

L1=/2, ¢))

(Angles opposite the equal sides of an isosceles triangle are equal.)
Subtracting (2) from (1), we conclude that /. DAG (given a right
angle) is equal to /£ EBG (an obtuse angle by caonstruction).

But

Paradox 3. To prove that 45° =60°, or that 3 =45

On side 4B of equilateral triangle 4BC as hypotenuse construct
anisosceles right triangle ABD. We shall prove that £ ABC, which
is 60°, is equal to £ ABD, which is 45°,
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On BC lay off BE equal to BD. Matk F, the mid-point of 4D,
and through E and F draw a line which intersects B4 produced in
G. Draw GD. Then con-
c struct the perpendicular
bisectors of GEand GD.
Since GE and GD are
not parallel, the perpen-
dicular bisectors must
meet at some point, say
K. Connect X with G,
D, E, and B. Our main
job now is to show that
triangles KDB and KEB
are congruent. Note first
that KG =KDand KG =
KE. (Any point in the
perpendicular bisector
of a line is equidistant
from the ends of the
line.) Hence KD =KE.
Furthermore, BD =BE
by construction, and BK
isa commonside. There-
fore triangle KDB is
F16. 65 congruent to triangle
KEB, whence /£ KBD =
2 KBE. If now we subtract the common portion / KBA from each
| of these angles, we must conclude that £/ ABD = £ ABC, or that
| 45° = 60°, or that 3 = 4.

Paradox 4. To prove that if two opposite sides of a quadrilateral

are equal, the remaining two sides must be parallel.®
| .Suppose the quadrilateral is ABCD, as shown in Figure 66(a),
with AD = BC. We shall prove that 4B is parallel to DC. Erect the
perpendicular bisectors of ABand DC. (In the figure, P and Q are
the mid-points of DC and 4B respectively.) If the perpendicular
> bisectors coincide or are parallel, then 4B and DC, being per-
‘ pendicular to the same line or to parallel lines, will be parallel, and
the theorem is proved. So let us suppose that they meet at o.

Draw OD, OC, OA, and OB.
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Now triangles DPO and CPO are congruent, since PO is come
mon and, by construction, DP =PCand /. DPO = / CPO. (If twoe
sides and the included angle of one triangle are equal respectively
to two sides and the included angle of another, the triangles are
congruent.) Therefore DO =CO. In precisely the same manner
triangles AQO and BQO are congruent and 40 =O0B. Also AD
was given equal to BC. Therefore triangles AOD and BOC are
congruent. (If the three sides of one triangle are equal respectively

by~

Fi1a. 66(a)

to the three sides of another, the triangles are congruent.) It follows
from the congruence of triangles DPO and CPO that /1= /2,
and -from the congruence of triangles AOD and BOC that /3
=/4. Hence /1+/3=/2+ /4. Butif OR is the extension
of PO, then £1+/3+ /L AOR = £24 /4 + L BORbecause each
of these sums is equivalent to a straight angle, Subtracting the first
of these last two equations from the second, ZAOR =/ BOR.
That is, PO extended bisects £ AO0B. On the other hand, from the
congruence of triangles AQ0 and BQO it is evident that OQ bi-
sects £ AOB. Therefore PR and OQ must coincide, in which case
AB and DC are both perpendicular to the same straight line and
so must be parallel.

If O lies outside the quadrilateral, as in Figure 66(b), we have
£1=/2, /3= /4 precisely as before, But now £l~ £3=/2-
- /L4, or LAOP=/BOP, That is, OP again bisects / AQB.
But, as before, so also does OQ. Therefore OP and 0@ coincide
and again 4B is parallel to DC.
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-
ey

o~

F16. 66(b)

Finally, if O and P coincide, then by reasoning similar to what
has gone before it is easy to show in Figure 66(c) that /3 =/4
and that £5 = /6. Consequently 23+ /5=/4+/6,0r OQis
perpendicular to DC as well as to AB. Again 4B and DC are
parallel. A similar argument holds if O and Q coincide.

D o
3/

54
/! AN
™,

Fi1a. 66(c)

Paradox 5. To prove that every point inside a circle must lie on
the circumference of the circle."

Let B be any point within the circle O of Figure 67. Through B
draw diameter 4C. Now find point D on AC produced so that D
divides AC externally in the same ratio that B divides ACinternally
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- in other words, so that AB/BC =AD/DC. Erect QP, the per-
pendicular bisector of BD, and draw OP and BP,

Fi1a. 67

If r denotes the radius of the circle, then 4B =r+ OB, BC =r
—=OB, AD =0OD+r, and DC =0D-r. The proportion AB/BC
=AD/DC can then be written

r+OB_OD+r, )
r—-0OB OD-r
Clearing of fractions,
(r+OB)Y(OD ~r) =(r—- OB)(OD +7r). (V3
Multiplying out and simplifying,
OB.OD =12, 3)
Now from the figure,
OB=0Q-BQ, ()]
and

OD=0Q0+0D. ) ‘

But since Q bisects BD, QD is equal to BQ, so that (5) can be
written in the form

0D ~00Q+BQ. © i
Multiplying (4) by (6) and substituting r2 for OB. OD on the left, 1
r=002-BQ2 )]
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Applying the Pythagorean theorem (the square of the hypotenuse
of a right triangle is equal to the sum of the squares of the other
two sides) to triangles OQP and BQP, we have

OP2=002+0QP?, ®
BP2 =502+ QP2 ©)
Subtracting (9) from (8),
OP2-"BP2 =002~ BQ2, 10)
But OP =r. Therefore (10) can be written
r2—BP2=002-BQ2. an

Now replace the right-hand side of (11) by its value given in (7).

Then
r2—BP2 =r2,
or

whence

BP =0.
But if BP =0, it follows that B and P must coincide, so that B,
given as any interior point of the circle, must lie on the circumfer-

ence of the circle. .

The following group of problems is concerned with a type of fallacy
which we discussed at length in Chapter 5. We shall perhaps recog-
nize the error when it turns up. Consider the following theorem.

To prove that two unequal lines are equal.®
[+

P Q

/ ~N

At B
Fi1a. €68

Let ABC be any triangle and draw any line PQ parallel to AB.
Then triangles £3C and PQC are similar. (If a line is drawn par-
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allel to one side of a triangle and intersecting the other two sides,
it cuts off a triangle similar to the given one.) Consequently

AB AC 1
Po=7C o
(The corresponding sides of two similar triangles are proportional
by definition.) That is,
AB.PC=AC.PQ. 2)
Multiply both sides by AB-PQ:
AB2.PC~AB.PC.PQ =AB.AC.PQ - P(2. AC. (3)
Add 4B.PC.PQ tobothsides and subtract AB. AC .PQfromboth
sides:
AB2.PC-AB.AC.PQ =~AB.PC.PQ-PQ2. AC @
Factorize;
AB(AB.PC~ AC.PQ) =PQ(AB.PC— AC.PQ), o)
Divide both sides by AB. PC - AC.PQ. Then
AB=PQ. ©)
This proof is perhaps rather convincing. The figure is so simple
that no error can lie in that direction, and the logical argument is
straightforward. But in fact, it’s our old friend, division by zero.
In step (2) we established the fact that AB.PC =AC.PQ, and in
step (6) we divided both sides of the equation by the difference of
these two equal quantities.

Some readers may have found this example a little obvious:
What about the next two?

Paradox 1. To prove that a line segment is equal to part of itself.®
[}

4 D E B
Fia. 69

In any triangle 4BC, suppose that angle Aisacute and that angle
C is greater than angle B, (These suppositions in no way restrict
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the choice of a triangle, but merely constitute directions for letter-
ing Figure 69.) Construct /. ACD equal to /B and draw CE per-
pendicular 10 AB. We shall prove that AB =A4D.

In triangles ABC and ADC, / A is common, and /B =/ ACD
by construction. The triangles are therefore similar. (If two angles
of one triangle are equal respectively to two angles of another, the
triangles are similar.) It follows that

AABC _CB?2 )
AADC CD2
(If two triangles are similar, their areas are to each other as the

squares of any two corresponding sides.) Moreover, since CE is
the common altitude of the two triangles,

AA4BC _AB )

AADC AD :
(The areas of two triangles with equal altitudes are to each other
as their bases.) From (1) and (2) it follows that

CB2 AB 3

CD? 4D
Multiplying both sides of (3) by CD2 and dividing both sides by
>
CB:_CD2 @
AB AD
Now a theorem which is not included in all elementary texts on
plane geometry is the following: In any triangle the square of the
side epposite an acute angle is equal to the sum of the squares-of the
other two sides minus twice the product of one of these sides times
t{ze Dprojection of the other upon it. (In the figure AE is the projec-
tion of AC on AB. Incidentally, this theorem is the basis of the
law of cosines in trigonometry.) Applying this theorem to eacy_gf
the triangles ABC and ADC, we can substitute for CB2 and CD?
in (4) as follows:

AC2+AB2-24B.AE_AC24+AD2-24D.AE o)
4B 4D

Carrying out the indicated division, we can write (5) in the form

AC2 AC2
4p TAB-24E="r5+AD - 24E. ©)
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Adding 2AE to both sides and subtracting AB and 4D from both
sides,

ac:_ . _4c?
4B AP =Jp 4B, ™
or
AC2-AB.AD _AC2-AB.AD ®)
AB AD ‘

Since the numerators of the fractions in (8) are equal, so also are
the denominators, That is, AB=AD.

Paradox 2. To prove that the sum of the two parallel sides of a
trapezium is zero.2®

F16,70

Denote the parallel sides of trapezium ABCD by p and ¢ as
shown in Figure 70. Produce DC a distance g to F, and BA a dis-
tance p to E. Draw EF, DB, and AC; and denote 4G, GH, and
HC, the segments into which AC is divided, by 7, 5, and # respect-
ively.

In triangles ABH and CDH, / HAB=/HCD and / HBA

=/ HDC. (If two parallel lines are cut by a transversal; the altern=
ate interior angles are equal.) Hence triangles ABH and CDH are
similar, (If two angles of one triangle are equal respectively to two
angles of another, the triangles are similar.) Therefore

DC _HC p .t

AB~HZ g "F T ®
(By definition, the corresponding sides of two similar triangles are
proportional.) In exactly the same way it can be shown that tri-
angle EAG is similar to triangle FCG and that

AE_AG - p_ r 2

CF~GC ¢ =5s+¢ @
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From (1) and (2) it follows that
p__t _ T,
g r+s s+t ®
Now apply to the second and third members of (3) one of the pro-
perties of proportions listed in Chapter 5. (Property C, page 89.)
This operation gives

p__t-r _t-r_-(-0__

g r¥s—-(G+9 r—-t  r-t L. @
From (4) we conclude that p = — g, or that p +¢ =0. In other words,
the sum of the sides DC and 4B of trapezium ABCD is zero.

*

A great deal of unnecessary writing is avoided in mathematics by
the use of reasoning by analogy. We made legitimate use of this
type of argument in step (2) of the last example when we said, ‘In
exactly the same way it can be shown that...” But care must be
used in applying it. Witness the following theorem:

To prove that Va+v'b =V2(a-+b)*
In triangle ABC of Figure 71 denote by 4 the altitude from C'to
AB, and by p and ¢ the segments into which 4B is divided by the

'
-

Fic. 11

altitude. Now construct a line 2’ so that it will be parallel to # and
will divide the triangle into two parts of equal area. Call the seg-
ments into which AB is divided by this line x and y respectively.
Then
2.AAED =AABC. (1)
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Since the #rea of a triangle is equal to one half the base times the
altitude, (1) can be written

2.3xh’ =3(p +q)h. @
Now triangle AED is similar to triangle AFC. (If a line is drawn
parallel to one side of a given triangle and intersecting the other
two sides, it cuts off a triangle similar to the given one.) Conse-
quently ,
K _x ®
h p »
(By definition, the corresponding sides of two similar triangles are
proportional.) Solving (3) for 4’ and substituting in (2),

2 i@ +ah. @

Dividing both sides of (4) by 4, multiplying both sides by p,and
extracting the square root of both sides,

= [P(p+q)
x JT 0)

(Here we are justified in taking only the positive sign with the
square root, since x is a segment of positive length.) Now ¥ bears
the same relation to g that x bears to p. By similar reasoning, then,

we have
N ZDN ®

Adding (5) and (6) and replacing x +y on the left by p+q (each of
these quantities is identical with AB, the base of the original tri-

angle),
=«/m(\/5 +J§) @®

Dividing both sides of (8) by V7 ¥q,
' \ETENIEN A
pt+q /% + 7 ©
Finally, substituting 2a for p and 25 for ¢,

V2a+by=va+vs,
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This result, of course, is ridiculous. The error occurred in step
(6). We cannot reason about y as we did about'x. We made use in
(2) and (3) of the fact that x is the base of a triangle similar to tri-
angle AFC, and y does not enjoy this property. In other words, ¥
does not bear the same relation to ¢ that x bears to p.

Reasoning by analogy is safe enough if properly used, but even
outside the field of mathematics it can lead, if misused, to results
which are not only absurd, but sometimes disastrous.

*

We conclude this chapter with two fallacies for those of us who
have studied solid geometry.

Paradox 1. To prove that the sum of the angles of a spherical
triangle is 180°.*

Let ABC be any spherical triangle. Choose any point P inside
the triangle and pass great circles through P and 4, B, and C're-
spectively, dividing the original spherical triangle intc three smaller
ones,. (See Figure 72.) Now call the sum of the angles of any spheris
cal triangle x°. Then the sum of the angles of the three small trie
angles is 3x°. Included in this sum is the sum of the angles about

[4

F16.72

the point P, or 360°, But the sum of the angles of triangle ABCis
equal to the sum of the angles of the three small triangles minus
the sum of the angles at P. That is, x =3x — 360, whence 2x =360,
or x =180. This conclusion contradicts a well-known theorem to
the effect that the sum of the angles of a spherical triangle can be
anything between 180° and 540°.
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Paradox 2. To prove that from a point outside a plane an infinite
number of perpendiculars can be drawn to the plane.X®

P

Fi1c.73

In Figure 73 let P be any point outside of plane 7. Choose any
two points 4 and B in the plane, and on P4 and PB as diameters
construct two spheres. These spheres will intersect the plane m in
two circles. (The intersection of a plane and a sphere is a circle.)
And these two circles will intersect at two points, say C and D.
Draw PC, PD, AC, AD, BC, and BD.

Now think of a plane passed through P, 4, and C. (Three points
determine a plane.) This plane will intersect the sphere about PA
in a circle, so that / PCA will be inscribed in a semicircle. Hence
£ PCA is a right angle, (An angle inscribed in a semicircle is a
right angle.) / PCBis a right angle for the same reason. Therefore
PC is perpendicular to both CA and CB, and so perpendicular to
plane m. (If a line is perpendicular to each of two intersecting lines
at their point of intersection, it is perpendicular to the plane of the
two lines.) In exactly the same way it can be shown that PD is per-
pendicular to both DA and DB, and so perpendicular to plane m. -
But since there are an infinite number of choices for 4 and B, and
since to each choice correspond two perpendiculars, there must be
an infinite number of perpendiculars from P to m.
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CHAPTER SEVEN

Paradoxes of the Infinite

For well over two thousand years mathematicians have been
struggling with the infinite. They cannot afford to disregard it, for
it is indispensable in much of their work. Yet in their attempts to
understand it and to use it, they have run up against many con-
tradictions. Some of these they have been able to overcome, while
others are still causing them trouble. Indeed, the paradoxes en-
unciated by Zeno of Elea in the fifth century B.C. have never been
settled to the complete satisfaction of all mathematicians.

The infinite is an insidious sort of monster. It often turns up
when least expected — when one’s back is turned, so to speak. Then,
too, it is sometimes difficult to recognize, for there is more than
one breed of the monster. There is the infinite in algebra, the in-
finite in geometry, the infinitely small, the infinitely large, and so
on. Again, there is not only one infinite, but a whole hierarchy of
infinites.

In a single chapter we cannot hope to cover material which has
filled entire volumes. We shall go into the subject just far enough
to be able to appreciate some of its remarkable paradoxes. When-
ever possible, the reader will be referred to more detailed treat-
ments of the various topics we discuss here.

THE INFINITE IN ARITHMETIC

First let us consider what we shall mean by an infinite ¢lass, or
group, or collection of things. For present purposes the following
intuitive and rather loose definition will do. ¢ An infinite class is one
whose members cannot be counted in any finite period of time,
however long.’ Incidentally, we shall assume that the counting pro-
ceeds at a uniform rate - one member a second, let us say. Some of
us will object to this definition on the ground that we use the finite
to define the infinite, but we shall have to agree that everyoneknows
what “a finite period of time’ means.

We must not confuse the infinite with the very large finite. Think,
for example, of the number of inhabitants of the earth at any par-
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ticular instant, or the number of leaves on all the trees of the earth
at any instant, or the number of blades of grass on the earth at any
instant. These are all very large numbers, yet they are finite. That
is to say, given sufficient patience and man-power, we could set out
to count the members of these large classes with the assurance that
we could finish the job. Some twenty-one centuries ago Archimedes
showed that he was able to distinguish between the infinite and the
large finite when he estimated the number of grains of sand re-
quired to fill the then known universe.

Where are we to find an example of an infinite class? Certainly
not in our world of physical experience, which after all is a finite
world. But wait. We have just spoken of counting the members of
a large collection. What of the collection consisting of the very
numbers with which we count ~ the so-called ‘natural numbers’?
Here is a class which fulfils the requirements of our definition. For
if we set out to count the natural numbers, 1, 2, 3, 4, 5, ..., can we
not do so with the assurance that if we continue until we die, and
pass the job on from generation to generation, neither we nor any
of our descendants will ever exhaust the supply? The natural
numbers, then, provide us with an infinite class with which we are
fairly familiar. )

Before going any further, let us examine a few other examples of
infinite classes, noting that they all arise out of the fundamental
natural numbers. In each case the dots signify, of course, that the
sequence goes on indefinitely, that is, without end.

(1) All values of #2, where 7 is a natural number:

19 49 9’ 161 259 369 49, 649 e
(2) All values of ’11, where 7 is a natural number:

1111111

(3) All values of 2", where n is a natural numbet:
2,4,8, 16, 32, 64, 128, 256, ...

(4) All values of 3 where 7 is a natural number:

1

t Btd

1111 1
16’ 32’ 63’ 128’ 256
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RIDDLES IN MATHEMATICS

All of these classes have the property that their members cannot be
exhausted by counting over any finite period of time, however fong.

*

We are now in a position to consider the first.of the paradoxes of
Zeno, mentioned briefly at the beginning of this chapter: Motion
is impossible. The conclusion is startling, we must admit; and the
argument is rather convincing. Let’s look at it.

To go from any point P to another point Q, we must first go
half the distance from P to Q, then half the remaining distance,
then half the distance then remaining, then half the distance then
remaining, and so on. The ‘and so on’ implies that the process can
be repeated, and is to be repeated, an infinite number of times.
Now regardless of how small the successive distances become, each
one of them unquestionably requires a finite length of time to
cover. And, argued Zeno, the sum of an infinite number of finite
intervals of time must be infinite. Therefore we can never get from
P to 0, however near together P and @ may be.

A number of possible solutions of this paradox have been pro-
posed.® The one we shall choose attributes the fallacy to the state-
ment ¢ the sum of an infinite number of finite intervals of time must
be infinite.’ This statement is generally, but not always, true. First
let us investigate the sum of all the members of the infinite class in
example (3) above. If we write

2+4+8+16+32+64+128 +256+...,

it is evident at once that as we go on adding successive terms, the
sum rapidly becomes larger and larger. Actually, it is not enough
to say simply ‘larger and larger’. We must be more precise. Let us
note that by going out far enough in the series, we can make the
sum of all the terms up to that point exceed any finite number,
however large. This fact is indicated graphically in Figure 74. For
example, if someone names the finite number 1000, we can, by
taking 9 terms, make the sum 1022, If he raises the bid to 1,000,000
we can make the sum 1,048,574 by taking 19 terms. If he cares to
go as high as 1,000,000,000, we have only to take 29 terms to make
the sum 1,073,741,822. No matter how large a finite number our
imaginary adversary sees fit to choose, it is evident that we can
always make our sum exceed his number by taking a sufficiently
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large finite number of terms. This is what the mathematician means
when he says that ‘the sum of this infinite series is infinite.’

e
b
o
W

FIG. 74; The sum 2 +4 +8 +16 432 +64 + 128 +256 + ... increases
without limit

But now let us return to the problem of motion from one point
to another. Suppose the distance from P to Q is 100 yards, and
that we walk at the rate of 100 yards per minute. Then the time
required for the first stage of the journey — half the distance from
P to Q - is § minute; that for half the remaining distance, } minute;
that for half the distance then remaining, 4 minute; that for half
the distance rhen remaining, % minute; and so on. In other words,
the time in minutes required to go from P to Q is the sum of the
infinite series
+14l st LI S
gt TB 32764 T “’3‘6

119

NH—‘



RIDDLES IN MATHEMATICS

(Note that this is the sum of all the members of the infinite clags in
example (4) above.) Is the sum of this infinite series infinite? As in
our previous series, the sum does get larger and larger as we go-on
adding successive terms. But it is 7ot true that we can make the
sum exceed any large finite number which anyone cares to name.
A glance at Figure 75 shows us intuitively that the sumapproaches
more and more nearly to 1, but never exceeds it. More precisely,
if anyone names a finite number, however small, we can, by taking
a sufficiently large number of terms, make the difference between
our sum and 1 smaller than the named number. For example, if

someone chooses the number -1-0—10.—5, we can, by taking 10 terms,

make the sum differ from 1 by Tblzi If he lowers the bid to

,000’000, we can make the sum differ from 1 by 0 4§ 576 by

taking 20 terms. If he cares to go as low as 1—0'0'0%’00707)—0’ we have

.only totake 30 terms to make thesumdifferfrom 1 by m

Agam we always have the better of our imaginary adversary ’And
again this is what the mathematician means when he says that ‘the
sum of this infinite series is 1.”

Consequently the time required to travel the 100 yards from P
to Q is not infinite, but is 1 minute, Motion, we learn with some
relief, is not impossible. Here mathematics comes to our aid and
backs up what everyday experience has taught us.

*

Zeno’s second paradox involves the problem of Achilles and the
tortoise. The argument in this case is to the effect that if Achilles
gives the tortoise a head start, he can never overtake him. For
Achilles- must always first get to the point from which the tor-
toise has just departed, and in this way the tortoise is always
ahead.

To clarify our ideas, let us suppose that Achilles givesthe tortoise
a start of 100 yards, that Achilles travels at the rate of 10 yards per
second, and that the tortoise travels at the rate of 1 yard per second,
Then Achilles travels the first 100 yards in 10 seconds. In the mean-
time the tortoise has gone 10 yards. Achilles takes 1second to cover
that distance, while the tortoise advances 1 yard. Achilles covers
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L 1 |

' 1 1 1 1 1 1 '
tgtgtgtrsty

F16.75. The sum % +} +3 +7% +& +d& +13s +z2s + ... approaches
1 as a limit

that distance in 3% second, and the tortoise is still && yard ahead.
And so on. Then the number of seconds which elapse before
Achilles catches up with the tortoise is the sum of the infinite series

1 1
10+1+10+100+1000+ .-

For those of us who remember our formulas for geometric pro-
gressions, it is but a moment’s labour to show that this sum is not
infinite, but that it is 112 seconds.

*
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Within the last hundred years numerous criteria have been devel-
oped to determine whether a given series ‘diverges to infinity”’ or
‘converges to a finite limit’ — that is, whether the sum of the series
is infinite or a finite number.2 We shall not go far into the tech-
nicalities of these criteria, but let us return for just a moment to
the two series,

2+4+448+416+4-32-4-64-1-128+-...

1,1,1,1,1,1,1
2tatstetta st
We have seen that the first of these diverges to infinity, while the

second converges to 1. Can this difference be traced to the fact that
the successive terms of the first get larger, while those of the second
get smaller? Let us not jump too hastily to conclusions. This much
is true: a necessary condition for convergence is that the successive
terms decrease in size. That this condition is 7ot sufficient is readily
shown by the ‘harmonic series’,

1,1,1,1,1,1,1 1 1 1 1 1 1,1 1
1+§+§+Z+—5_+3+7+§+§+E+—1—1+ﬁ+1_§+ﬁ+1_5+ﬁ+"'

and

This series can, by the insertion of brackets, be written in the form
1,/(1,1 1,1.1,1
1 +2'+(§ +Z) +(§ +6 +7 +§) +
1.+t 1. 1 1 1 1 1
(’§+iﬁ+i—1 +T§+1-§+ﬁ+i-s' +R Feee
Now since ! is greater th:m1 1 —}-1 is greater than 1+-1-' ; that
z1sen #\373 iti)
is, greater than %, or % Again, since %, %, and % are all greater than

%, the second group in brackets is greater than (% +~;— +—é +%), or

g, or % In the same way, the third group is greater than -1%, or %

And so on. Hence the sum of the series is greater than
1,1,1,1 1,11
1 +-2+§+§+§+§+—2°+§+-..,
and so the series obviously diverges to infinity, although it does so
very slowly.
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The condition that the successive terms decrease in size is there-
fore not sufficient for the convergence of a series in which all the
terms are positive. On the other hand, this condition #s sufficient
for the convergence of an ‘alternating series® - one in which, the
terms are alternately positive and negative. This proposition we
state without proof. For example, the series

1.1 1,111 1,1
1-3+3-3t5—5t7—gtg—
converges to a finite limit. The value of this limit, to six decimal
places,? is 0-693147 (actually log, 2).

*

Certain isolated cases of infinite series had been studied by mathe-
maticians from time to time, but it was not until the nineteenth
century that infinite series as a whole, together with the general
question of the infinite, began to be treated in a sound, logical
manner. In 1851 appeared a small volume entitled The Paradoxes
of the Infinite. It was the work of Bernard Bolzano, who did not
live to see its publication We can perhaps appreciate what the
best minds of the time were struggling with if we look at a few
examples taken from Bolzano’s book.
Consider the series

S=a~ata-ata—-ata—ata—~at..
If we group the terms in one way, we have
S=(@-a+@a-ad+@—a)+@a-ad+.

.=0+4-0-4+040+...
=0.

On the other hand, if we group the terms in a second way, we can
write
S=a-(@@-a)-(@a~a)—(a~a)—(@—~a)— e

=a—-0-0-0-0-...

=q,
Again, by still another grouping,

S=a-(@a-at+a-ata-a+...)
=a-S.

Therefore 2.8 =a, or § =%-

123



RIDDLES IN MATHEMATICS

Here, then, is an infinite series whose limit is apparently any one
of three quantities: 0, or a, or a/2. Today, using the definitions of
convergence and divergence which we developed in connexion
‘with the Zeno paradox, we should say that this series neither con-
vergesto a finite limit, nor diverges to infinity. Noting that its sum
oscillates between the values 0 and a, we should simply class it as
an ‘oscillating series’ and agree that it has no fixed sum, But in the
days before Bolzano ideas of convergence and divergence were not
so clearly defined, and such a thing as-an oscillating series pre-
sented real difficulties. Even Leibnitz — one of the master minds of
the seventeenth century, and co-discoverer with Newton of the
calculus - was befuddled by this particular series. He argued that
since the limits 0 and a are equally probable, the correct limit of the
series is the average value a/2. The méthod of grouping by which
we arrived above at the limit a/2 is the work of a mathematician
of the early nineteenth century.®

Even more startling are the results to be obtained from this series
in the special case in which @ has the value 1, For example, by
actual division we have, for any value of x,

1
-1-——+x=1 =X +x2=x34x4 —x5 +...,

1
m-l ~x+4x3—~x44x6 ~x7 o TN

Trgas =l — s =2 4o,

1
TR TR TE +x4=1—-x+x5--x5+x1°~x11+...,

and so on. Now let x have the value 1. All of the right-hand sides
redpce to the same number ~ that-is to say, to the ‘sum’ of the
series

1-141=-141-14+1~1+...,

while the left-hand sides become, trespectively, 4, 4, 4, 2, ... Con-~
sequently ¥ =4 =1 =} =.., =1/n, where n is any natural number!
As before, the correct argument is that the series 1 —1+1~14-1
—1+... does not have a fixed sum, but that its sum oscillates
between 0 and 1. ‘
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Consider still another example of Bolzano's. Let

S=1-24+4-84+16-32464~128+...

§=1-2(1-2+4~-8+16-324+64~...)
=1-28.

Then

That is,
3§ =1, or s=§-

On the other hand, the original series can be written

8 =1+(=2+4) +(~8+16) +-(~ 32 +64) +...
=1+2+8+32+64+...,

or § diverges to infinity. But again, we can write

§=(1-2)+(4-8)-+(16 - 32) +(64— 128) +...,
=—1-4-16-64—...,

or S diverges to negative infinity,

These contradictions are to be explained by the fact that this
series is not only an oscillating series, but is one which oscillates
infinitely, The sum of the first two terms is — 1; of the first three,
3; of the first four, — 5; and so on through the values 11, —21,43,
~85, ... It is evident that as we go farther and farther out in the
series, these partial sums jump from increasingly large positive

numbers to increasingly large negative numbers. In a word, the
series has no sum.
*

It is perhaps not so surprising that a series which fails to converge
to a definite limit can be made to appear to converge to a number
of different limits. But now consider the series

1,1 1,1 1.1 1
T2737gts gt gt

which, as has already been pointed out, converges to the finite

limit log, 2, or 0-693147. For simplicity we shall denote this limit
by L. Then

-1-ipl 1.1 1.1 1,1
L=l-3+3-3t5-5+7-5+5~
1,1 1 1 1,1 1
SRS VR VAN E IS T AN R TR
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Multiply both sides by 2:

21,21,21,21,2 1,2 1,21
-=2-.—1+§—2+§—3~+——l"Z+§'--5-+ﬁ"'6+—*‘*+-1—5—§+u.

Now group terms with the same denominator. Then

. 1IN 1,/2 1V 1 /2 1\ 1
2L=(2'1)"%+(§"§)"Z+(§"'5')"6+(7"7)“§+""
or

1,1 1,1 1,11
2L=1—§+’3‘—Z+§—'6+.7—-8-+..-

But the series on the right is the original series, and its limit is no
longer L, but 2L. Moreover, if the operation of multiplying by two
and collecting terms with the same denominator is repeated in-
definitely, the series can evidently be summed not only to L and
2L, but also to 4L, 8L, 16L, ... Here is a real dilemma - an infinite
series which converges to a finite limit, 0:693147, yet which can, by
properrearrangements, bemadeto converge to 1-38629, or 2:77259,
or 5-54518, and so on!®

The difficulty arises from our attempt to apply to infinite series
the processes of finite arithmetic. In finite arithmetic we go on the
assumption that we can insert and remove brackets at will, group-
ing terms in any way we please. In other words, we assume that
A+B+C =(4+B)+C =A+(B+C). The contradictory results we
obtained above show that this finite operation cannot be applied
to infinite series in general.

The question then arises, is it ever possible to rearrange and
group the terms of a convergent infinite series with the assurance
that the limit will not be changed? The answer is yes — provided
the series is ‘absolutely convergent’. An infinite series is absolutely
convergent if not only the series itself converges, but if the series
formed by changing all minus signs to plus signs also converges.
Thus every convergent series in which all terms are positive is
absolutely convergent, and the criterion applies only to series in
which there are negative terms.
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Let us return for a moment to our original series,

1,1 1,1 1,11
1 —§+§—a+3”’6+7~§+...
If here we change all the minus signs to plus, the series becomes
the harmonic series,
1,1,1,1,1.1,1
1 +2+§+a-+'5'+3 +,7 +§+...,
which, as we found on page 122, slowly but surely diverges. Con-
sequently our series is not absolutely convergent, and so it is not
to be wondered at that we were able - through proper grouping -
to make it converge to limits other than log, 2.

If a series is convergent, but not absolutely convergent, it is said
to be “simply convergent’. The question of rearranging the terms
of a simply convergent series was settled in 1854 by the German
mathematician Riemann, when he succeeded in proving the fol-
lowing remarkable theorem.? The terms of a simply convergent
series can be so rearranged that the limit of the series is any specified
Jinite number, or positive infinity, or negative infinity!

We conclude this section with four additional examples of the
weird results to be had by rearranging and grouping the terms of
a simply convergent series. The first two are, essentially, but
different forms.of the paradox we have just discussed in detail,

Paradox 1. As before, denote by L the value of log, 2. Then®

1,1 1,111 1.1
L=1-3+3-3+5g+7-gto™

1.1 1.1 1,1 1
RSV U PR i P Tl TR

Grouping terms, first by twos and then by fours,

pre Ny
(%—§)+(%~~1—15)+(1-11—%§)+..., )

1.1 1\, /1t i,1 1y, {1 1,1 1
L‘*(l“z+§‘z)+(3"3+7“§)+ §‘m+ﬁ“i§)+'" @
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Dividing both sides of equation (1) by 2 we get

1, (1 11 1\,(1_1

2"=( ) (s §)+(1o rz)+(ﬁ'i?s)+"' e
Adding, bracket by bracket, equations (2) and (3),
3 1 1,11 1 1\, (1,11
i""(”Tz) (5+7 4) (9+TT“"6")+( 355 s)'*'

1,1 1,1 1.1 1.1 1
=1-3+3-4+5-gtrm gt 0t

Therefore the sum of the series is both L and gL.
Paradox 2. As in the previous example, denotelog, 2by L. Then®
1,1 1,1 1,11
L=1 —3Ft3~ Z+_—3+7—§+

Arranging positive terms in one group and negative terms in
another,

L-=(1+%+§+3,«+..) (;+},+é+§+ ) )
Now certainly
1
| 0= (+4+6+8 ) (2+4+5+s ) @
Adding equations (1) and (2),
1.1 1 1 1,11
1,1,1,1
2(§+E+E+§“*f“‘
1 1 1 1.1, 1

=0,

In other words, the sum of the series is both L and zero.

Paradox 3. It can be shown that the series,
1 1
rT3tsstsatiete
128



PARADOXES OF THE INFINITE

is convergent. Call its sum M. We shall ‘prove’*® that Mis both 1
and 1.
In the first place, the series can be written in the form

1.2\, (2_3\,(3_4\.(4_5
M "(r *§)+(§'3 +(§‘7) +(7 9)+"'
To verify this statement, note that the first term reduces to S_i____’—:

1, 10-9 1, ‘ .
or 13 the second term to =35 Ory s and so on. But if the

brackets are now removed, ail terms after the first drop out. There-
fore M =1,

On the other hand, the series can also be written in the form

1/1 1\, 1/1 1\, 1/1 1\, 1f/1 1
M ""i(i - 5) +5(§ - 3) +5.(§ - —7) +z(7 5) toee
To verify this statement, note that the first term reduces to % %1.

o 11.3; the second term to %%?, or »1<; and so on. If now the

3.5
brackets are removed, we have

1 1,1 1,1 1.1
M=3-%T6 ot @t~

Again all terms after the first drop out, so that M =4,

Paradox 4. To prove that every infinite series, convergent.or not,
can be summed to any desired number N.

Consider the series
ay+ax+az+as+as+ag+...
We can write

a1=N+(a-N),

az=—(ai—N)+(ai+a~N),

a3 = ~(a1+ay~ N) +(a1+az+a3~ N),

a4 = ~(a1+ax+a3— N)+(ay +az +as+as - N),

as = ~(a1+az+as+ay — N) +(ay +az+a3-+as+as~ N),
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and so on indefinitely. Adding these equations, we have

aytaxtaztastas+t...
=N+(a;—N)—(ay~N)+(a1+a2—-N)
—(ai+az—N)+(a1+az+a3—N)
— (@1t a2+as— N)+(a1+az+az+as—N)
~(a1+ax+az+ag—N)+...

But, now, on the right-hand side of this equation, all terms after
the first drop out when the brackets are removed. Consequently
the sum of the series on the left-hand side is N.

THE INFINITE IN GEOMETRY

Thé following paradox appeared some three hundred years ago in
Galileo’s Dialogues Concerning Two New Sciences It is typical of
the confusion which at that time arose from attempts to work with
the infinite in geometry.

Take any square 4BCD and draw the diagonal BD, as in Figure
76, With B as centre and with radius BC describe the quarter-

F1G. 76. As HE approaches BC; the shaded circle shrinks to the point B and
the shaded ring to the circumference of a circle with radius BC
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circle CFA. Draw any line HE parallel to BC, intersecting the
quarter-circle at F and the diagonal at G. With H as centre con-
struct circles with radii HG, HF, and HE respectively.

It is not difficult to-show that the area of the shaded circle is
equal to that of the shaded ring. To do so, note first that triangle
FBH is a right triangle. Consequently, by the well-known Pytha-
gorean theorem, BF2 = HB2+ HF?2, or

B2 - BF2- BF2, ' o

But HE =BC, and, since BC and BF are radii of the same (quarter)
circle, BC =BF. Hence HE and BF are equal. Again, HB=HG
since they are also radii of the same circle. We can therefore re-
place, in equation (1), BF by HE and HB by HG, obtaining

HG?>=HE2- HF?2, Q)
Multiplying both sides of equation (2) by =,
7. HG2 =n, HE2 — 7. HF2,

The left-hand side of this equation represents the area of the shaded
circle. The right-hand side, being the difference of the areas of the
circles with radii HE and HF, represents the area of the shaded
ring.

Now think of letting HE move to the right and approach the
position BC. As HE coincides with BC the shaded circle shrinks
to the point B and the shaded ring shrinks to the circumference of
a circle with HE (now BC) as radius. But since the areas of the
shaded circle and the shaded ring are equal for any position of HE,
we must conclude that a single point is equal to the circumference
of a circle!

Perhaps the solution of this paradox is obvious. It would be
more obvioushad we not cheated in the statement of the final con-
clusion. We should have said, ‘A single point is equal in area to
the circumference of a circle.’ The circumference of a circle is a one-
dimensional curve and can occupy no more area than a point, in
spite of the fact that it consists of an infinitude of points. The
areas of the circumference and of the point, both of them zero, are
indeed equal. .

The infinite in geometry continued to confuse mathematical minds
longafter Galileo. As late as 1834 an interesting but fallacious proof
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of the much-discussed parallel postulate’ of plane geometry was
offered, apparently in good faith.»* The postulate — assumption,
that is — referred to is generally stated as follows: Through a given
point outside a given line ,one and only one line can be drawn parallel
10 the given line. For centuries it was felt that this postulate could
be proved in terms of the other postulates, but all attempts at such
proofs were unsuccessful. Mathematicians finally began to suspect
that this assumption was as fundamental as the others ~as funda-
mental, for example, as the assumption that between two points
one and only one straight line can be drawn. A few of the bolder
spirits of the early nineteenth century began to experiment with
geometries in which this assumption was replaced by quite differ-
ent assumptions, and out of the efforts of these pioneers arose the
geometries now called ‘non-Euclidean’.

The parallel postulate can be stated in a number of forms, each
of them equivalent to the others. In the fallacious proof we are
about to describe we shall use the form originally given by Euclid:
If two straight lines are cut by a third in such a way that the sum of
the interior angles on one side of the third line is less than two right
angles, then the two lines, if produced indefinitely, will meet on that
side. That is to say, if the sum of the angles 4BC and BCD of Fig-
ure 77(a) is less than two right angles, then BA and CD, if pro-
duced, will ultimately meet.

P r p F H XK M
B »
//c B ch T L “
(a) (b
Fi1G. 77

The hopeful geometer of 1834 set up the figure of diagram (b) to
aid him in his proof. Through B he drew BY parallel to CD, and
constructed angles ABN, NBO, OBP,and PBQ eachequaltoangle

YBA. He correctly argued that whatever the size of angle YBA, he
could, by constructing enough angles ABN, NBO, ..., finally arrive
at one whose side (BQ in the figure) falls below the line BZ. Sup~
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pose there are n — 1 such angles (there are four in the figure). He
then marked off n — 1 segments, CE, EG, GJ, ..., each equal to BC,
and through the points of division drew lines EF, GH, JK, ..., each
parallel to CD. So far so good. But at this point he began to com-
pare infinite areas. He maintained, for example, that the infinite
are bounded on two sides by the infinite lines BY and BA is equal
to the infinite area bounded on two sides by B4 and BN, and that
the infinite area bounded on three sides by the line segment BC
and the infinite lines BY and CD is equal to the infinite area
bounded on three sides by the line segment CE and the infinite
lines CD and EF. Or, as he put it, the area YBA is equal to the
area ABN, and the area YBCD is equal to the area DCEF.

Let us assume for the moment that this argument and similar
arguments about infinite areas are valid. The rest of the proof
then runs: Area YBLM is equal to n times area YBCD, and area
YBQ is equal to n times area YBA. But area YBLM is only a part
of area YBZ, while area YBZ is in turn only a part of area YBQ.
Hence n times area YBCD is less than area YBZ, which in turn is
less than » times area YBA. That is to say, n. (YBCD) is less than
n. (YBA), or YBCD is less than YBA. But if such is the case, AB
must meet CD. For if AB did not meet CD, then YBCD would be
equal to the sum of YBA and ABCD, and so would be greater
than YBA.

The catch in this innocent-looking proof lies, of course, in the
fact that the areas involved are infinite. Of two finite areas, we can
say that the first is less than, equal to, or greater than the second.
But two infinite areas cannot be compared — we can say only that
they are infinite.

*

The remainder of this section will be devoted for the most part to
‘limiting curves’ — curves which are defined as the limit of an in-
finite sequence of polygons, that is, of an infinite sequence of figures
made up of straight lines. The notion of a limiting curve is not new
to any of us who have studied plane geometry. Let us recall briefly
how as familiar a curve as the circle can be regarded as the limit of
an infinite sequence of regular polygons. (A ‘regular polygon’ is
one with equal sides and equal angles.)

In diagram (a) of Figure 78, a square has been constructed on
the line segment 4B as diagonal. Diagrams (b), (c), and (d) show,
respectively, regular polygons of 2.4 or 8 sides, 2.8 or 16 sides,

133



RIDDLES IN MATHEMATICS

and 2.16 or 32 sides. Let us denote these successive polygons by
Py, {’2, P3, and P4, By continuing indefinitely to double the number
of sides we obtain a sequence of polygons, Py, Pa, P3, P4, Ps, Pé, «.

| ) @

F16. 78. The circle as the limit of a sequence of regular polygons

Now it is intuitively evident — and it can be proved rigorously —
that this sequence of regular polygons approaches, as a limit, the
circle whose diameter is AB.

&

‘ Care must be used in appealing, as we have just done, to intuition.
We must stop to consider three problems in which intuitive argu~
ments lead us wildly astray. The correct solutions of these pro-
’ blems are discussed in the Appendix.

Paradox 1. Consider the isosceles right triangle in Figure 79(a).
Ifeach of the equal legs is 1 inch, then, by the Pythagorean theorem,
the hypotenuse is V' 12+12 =V T+1 =v2 inches. In diagram (b)
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the broken line is drawn, beginning at the lower left-hand corner,
by going up 1 inch, over %, up 4, over 4, and up $. Call this line Ly,
In diagram (c) the number of ‘steps’ is doubled, resulting in the
broken line L; and in (d) redoubled, resulting in the broken line
Ls. Continuing indefinitely the process of doubling the number of

s
/| L/

@ ®)

(c) @

F16.79

steps, we obtain a sequence of broken lines, L1, Ly, L3, L4, Ls, Lg,
... This sequence of lines approaches, as a limit, the hypotenuse of
the original triangle. Consequently the length of the limiting line is
4/2 inches. True? No, false. What is its length?

Paradox 2. A circle is constructed on a diameter 4B, as in Fig-
ure 80(a). Call this curve C,. Now construct a curve consisting of
two circles, each of diameter AB/2, as in diagram (b). These two
circles can be thought of as a single curve, traced as indicated by
the arrows. Call this curve C,. Curves Cs and C4 are shown in
diagrams (c) and (d). They consist, respectively, of four circles,
each of diameter 4 B/4, and of eight circles, each of diameter AB/8.
Continue indefinitely the process of doubling the number of circles
and halving the diameters. The result is a sequence of curves Cj,
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/1

®)

@

) @
Fia. 80

Cs, C3, C4, Cs, Cs, ... The limiting curve, being made up of infin-
itely small circles, is indistinguishable from the line segment AB.
Now recall that in tracing each curve we go from 4 to B and back
to 4. Hence the length of the limiting curve is 2.4B. True? No,
false. What is its length?

Paradox 3. In a circle of radius R inscribe a square, as in Figure
81(a), and on each side of the square as diameter constructa semi-
circle. Denote by Cj the curve formed by these semi-circles. Now
inscribe a regular octagon, as in diagram (b), and denote by Cy the
curve formed by the semicircles constructed on its-sides. Continue
indefinitely the process of doubling the number of sides of the
polygons and constructing semicircles on the sides. The result is a
sequence of curves, Cy, Cz, C3, Cs, Cs, Cs, -+, of which C3 and C4
are shown in diagrams (c) and (d). The limiting curve, being made
up of infinitely small semicircles, is indistinguishable from the
original circle of radius R. Its length is therefore 2z R. True? No,
false. What is its length?

We are now ready to consider some of the so-called ‘pathological
curves’ to be found in mathematics — curves which have been con-
structed by mathematicians in their attempts to prove or disprove
certain intuitive ideas.’® Each of these curves will be defined, in
much the same way that the circle was defined above, as the limit
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Fia. 81

of a sequence of polygons, Py, P>, Ps, Py, Ps, Ps, ... In none of
the present instances, however, will it be possible, as it was in the
case of the circle, actually to draw the limiting curve. We shall
have to content ourselves with constructing only the first few poly-
gons of each sequence. The problem of picturing the ultimate
curves must be left to our imaginations.

The first item has been dubbed the ‘snowflake curve’ because of
the shape it assumes. Py, the first polygon of the sequence, is the
equilateral triangle of Figure 82(a). Divide each side of this triangle
into three equal parts, construct a new equilateral triangle on the
middle segment of each side, and do away with lines common
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(a)

(©) @
Fi1g. 82

to the old and new triangles. This results in P,, the star-shaped
polygon of diagram (b). To get P3, trisect each side of this polygon,
erect a new equilateral triangle on the middle part of each side, and
again get rid of lines common to the old polygon and the new
triangles. Repeat the same process indefinitely. The result is a se-
quence of polygons, Py, P, P3, P4, Ps, Pg, ..., of which the third and
fifth members are shown in diagrams (c) and (d) respectively of
Figure 82,

The limit of this sequence of polygons is a truly remarkable
curve: its length is infinite, yet the area it encloses is finite! To prove
that the area is finite, think first of a circle circumscribed about the
original triangle of diagram (a). Then note that at no subsequent
stage of the development — as in diagrams (b), (c), and (d) - will
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the curve ever extend beyond this circle. Now consider the length
of the curve. Suppose each side of the original equilateral triangle
is 1 unit long. Then the perimeter of Py.is 3 units. In constructing
P2 we added six lines of length 4 unit and subtracted - by doing
away with — three lines of length % unit. Net result; we added 1 unit
to the perimeter. That is to say, the length of P is 3+41. In the
same way, that of P3 is 3+1+(%); of P4, 3+14+® +(42; and so
on. The perimeter of the limiting curve is therefore the sum of the

infinite series
4 [4\2 [4\3  [4
srtag () +(5) +(5) +-

It is evident that the successive terms of this series increase in size
and that the sum can be made as large as we please by taking a
sufficiently large number of terms. Consequently, in accordance
with our definition of infinite sum (pp. 118-19), the length of the
limiting curve is infinite.

]
A few pages back it was pointed out that a line can occupy no area,
This statement is true provided the line is finité in length. But
mathematicians have succeeded in constructing a number of limit-
ing curves which completely fill a given area! The following curve
is one designed by the Polish mathematician, W. Sierpifiski.1¢

The first member of the sequence is the polygon P, inscribed in
a given square as shown in Figure 83(a). The square is then divided
into four equal squares, and four polygons, similar to Pj, are
joined together to form P, as in diagram (b). To get P; each of
the four squares is divided into four more, and sixteen polygons,
again similar to Py, are joined together as in diagram (c). The same
process, repeated, gives the polygon Py, shown in diagram (d). If
the process is continued indefinitely, there results a sequence of
polygons, Py, P3, P3, P4, Ps, Ps, ...

This sequence of polygons approaches, as a limit, a certain curve,
Now it can be rigorously shown that this curve passes through any
specified point of the square in which it is inscribed. Consequently
it must pass through every point of the square, and so must com=
pletely fill it, And if it is not enough of a blow to our intuitions to
learn of a one-dimensional curve which fills a two-dimensional
square, it might be pointed out that the construction can be
generalized to a one-dimensional curve which completely fills
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a cube in three-dimensional space, or even a ‘cube’ in a space
of any number of dimensions!

*

Before examining the next specimen, we must stop to define clearly
what we shall mean by a ‘point of intersection’ of a curve - that is,
a point at which the curve crosses itself.

A point is said to be an ‘end point’ of a curve if a small circle
with the given point as centre always cuts the curve once, however
small the circle may be. If the arbitrarily small circle about the
point cuts the curve twice, the point is called a *general point’ of
the curve. Finally, if the arbitrarily small circle about the point
cuts the curve more than twice, the point is said to be a *point of
intersection’ of the curve. Thus, in the curve of Figure 84, P is an

140



PARADOXES OF THE INFINITE

end point, Q is a general point, and R and S are points of inter-
section. We can agree, can we not, that this defisiition coincides

with our intuitive idea of a point of
intersection?

Relying further on intuition, we should
undoubtedly say that it is impossible to
constructa curve consisting only of points
of intersection, That this is not the case
was shown by Sierpifski in 1915. His
example is constructed as follows:

Divide an equilateral triangle into four
congruent equilateral triangles, shade the
middle one, and draw in a heavy line as
indicated in Figure 85(a). This heavy line
is L, the first of a sequence of broken
lines. Now divide each of the unshaded

P

Q
Fi1:G. 84

triangles into four congruent triangles, shade the middle one in
each case, and draw in the heavy line of diagram (b). This lineis Ly,
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the second of the sequence. Continue the process indefinitely, at
each step. dividing the unshaded triangles into four new ones,
shading the middle one, and drawing the appropriate heavy line.
Diagrams (c) and (d) show the third and fourth members of the
resulting sequence of broken lines, Ly, Ly, L3, L, Ls, Lg, ...

It can be proved that the limit of this sequence is a curve of
which every point — with the exception of the vertices of the ori-
ginaltriangle — is a point of intersection according to our definition.
Finally, if the original triangle is bent out of its plane so as to bring
the three vertices together in a single point, then the curve crosses
itself at every point!

We must admit that this curve is not as easy for the imagination
to picture as were the last two curves. The final conclusion will
have to be accepted by the non-mathematician onfaith. Themathe-
matician, if he so desires, can go to the original source for the
proof.*® Incidentally, both this curve and the area-filling curve are,
like the snowflake curve, infinite in length.

*

Let us return, for a moment or two, to the map shown in Figure
57, page 78. In this map there are four countries, each of which
touches the other three. For the most part, points on the bound-
aries between the countries are points common to two countries.
.There are only three points in the figure which are common to
three countries. In order to be precise, we had better define what
we mean by ‘a point common to two or more countries’. We can
‘do so in a manner similar to that in which we defined ‘point of
intersection’ in the last example. Thus we shall say that a point is
common t0 two (or more) countries if an arbitrarily small circle
about the point as centre includes points of both (or all) countries,
Here again is a definition which, if we stop to think of it, coincides
with our intuitive ideas.

Common sense will tell us that points common to three coun-
tries must be, as they are in the map referred to, isolated points ~
in other words, that it is impossible for three countries to have a
whole line of points in common. That this conclusion is false was
shown by the Dutch mathematician Brouwer in 1909.1¢ Only a
mathematician would conceive the weird map we are about to
describe, but here it is.

In Figure 86(a) are countries 4, B, and C, together with a nice
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section, D, of unclaimed territory. We shall assume that D is three
miles long and one and a half miles wide. Country A4 first claims
all the land in D which lies more than % mile from the boundaries
of D (diagram b). It is only reasonable, of course, to connect the
new territory to the mother country by means of a narrow corri-
dor, but the presence of this corridor will have no effect on the
argument to follow. Country B then steps in and takes all of the
remaining territory which lies more than £ mile from the new
boundaries of D (diagram c). Country C, not to be outdone, an-
nexes all of the remaining territory which lies more than ; mile
from these still newer boundaries of D (diagram d). But even now
there remains quite a bit of unclaimed land, so they begin all over
again, A4 claims all the land which lies more than -& mile from
what are now the boundaries of D; B, all the land more than iz
mile from these new boundaries; C, all the Jand more than %5
mile from these still newer boundaries; and so on indefinitely.

A 8 C

[

DM \\

F16. 86
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In the limit, all the original territory D will have been claimed.
Furthermore, this can be brought about in a finite length of time
by assuming that the first annexation took place in half a year, the
second in a quarter of a year, the third in an eighth of a year, and
so on. For then the total time in years required to fill the territory
completely would be the sum of the infinite serics,

1,1,1,1.,1 1
§+a+§+1"6‘+§‘2‘+6~4+...,
and this, as we have seen eatlier in this chapter, comes to one year.

What of the new map of the once unclaimed territory D? It is
impossible to draw it, but this much can be said of it. According
to our definition of a point common to two or more countries,

_every boundary point is a point common {o Hot only two, but to all
three of the countries A, B, and C!

THE ARITHMETIC OF THE INFINITE

At the beginning of this chapter, the class consisting of all natural
numbers,
: 1,2,3,4,5,6,7, ...,

and the class consisting of the squares of all natural numbers,
1,4,9, 16, 25, 36,49, ...,

were, presented as examples of infinite classes. At that time it may
have occurred to some of us to inquire whether or not there are
¢more’ members of the first class than of the second. It is certainly
true that all the members of the second class are members of the
first, while there are many members of the first class which are not
members of the second. Can it not therefore be said, in spite of the
fact that both classes have an infinite number of members, that
the infinitude of members in the first case is somehow or other
¢greater’ than that in the second?

The very problem under consideration was discussed in 1638 by
Galileo in his Dialogues,awork towhich we have already referred.*”
He came to the conclusion that all we can say about the two classes
is that each of them is infinite - the relations ‘equal’, ‘greater’, and
“Jess’ can be applied to finite classes, but not to infinite classes.
There the matter rested until interest in it was reawakened, in 1851,
by Bolzano’s book on the paradoxes of the infinite. But even Bol-
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zano did not carry his investigations far enough. The possibility of
comparing degrees of infinitude was finally realized by Cantor, a
German mathematician, in 1873. Out of his work has grown that
branch of mathematics called the ‘theory of aggregates’ ~a theory
which leads to most extraordinary results. T

*

In order to understand Cantor’s processes of reasoning, we must
begin with counting - an operation with which we should be fairly
familiar. What do we do when we count the members of a finite
cldss of, say, forty-three objects? It is not enough to say that we
point at each member successively and recite, ‘One, two, three,
.., forty-two, forty-three’. The ability to perform this operation
indicates a highly developed vocabulary of number words. We
must go behind the operation of counting by means of words if we
are to get at the fundamental process actually involved,

Suppose that you are the leader of an expedition of forty-three
people, travelling in an uncivilized country where the vocabulary
of number words is limited to “one’, ‘two’, “three’, ‘four’, and
‘many’, (The existence of savage tribes whose number vocabulary
is so limited is well known.) Suppose further that you have gone
on ahead to a village where you expect to spend the night, and that
you are trying to make the village chief understand that you want
food prepared for forty-three people. Assuming that. he under-
stands you want food, how will you put over the idea of ‘forty=
three’? Very likely you will do it by making marks on a piece of
paper; or on the ground - one mark corresponding to each member
of the party. If a plate of food corresponding to each mark is then
prepared, you can be sure that each member of the party will be fed.

Thus the chief, with 1io word whatever for the number *forty-
three’, is able to count the number of people in the party, and thé
number of plates of food. To describe the process in somewhat
more precise terms, you set up what is called a.“one-to-one corre~
spondence’ between the members of your party and the marks on.
the paper. The correspondence is * one-to-one* because corresponds
ing to each person there is one mark, and, conversely, corresponds
ing to each mark there is one person. The chief then sets up a onee
to-one correspondence between the marks and the plates of food,

Hereis counting in its simplest and most fundamental form ~ the
setting up of a one-to-one correspondence between the memberg
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of two classes. The child who counts on his fingers, the Chinese
laundryman who reckons his accounts on the abacus, the billiards
player who keeps score by means of counters — all of them, con-
sciously or unconsciously, are counting by means of one-to-one
correspondences.

Consider one more example. Suppose a theatre contains-a cet-
tain number of seats — the precise number is immaterial — and
suppose the box-office manager wants to know roughly how many
people are in the audience. If he notes that every seat is filled and
that no one is standing, then he knows that the number is equal to
the number of seats. In other words, there is a one-to-one corre-
spondence between people and seats. If,onthe otherhand,some of
the seats are empty — if there are seats to which no people corre-
spond — then he knows that the number of people is /ess than the
number of seats. Finally, ifall the seatsarefilled and there are some
people standing — if there are people to whom no seats correspond
— then he knows that the number of people is greater than the
number of seats.

It should be emphasized that the scheme by which any particular
correspondence is set up is of no importance. In order to conclude
that two classes of objects have the same number, it is necessary
only to exhibit some sort of systematic method of establishing a
one-to-one correspondence between their members,

*

The natural numbers, 1,2, 3, 4, 5, ..., are pure abstractions. We go
about getting them in essentially the following way. Beginning
with some very fundamental and familiar objects ~ our fingers, let
us say — we denote by the symbol ‘1’ the number of any class
which can be put into one-to-one correspondence with a single
- finger. (We should perhaps avoid the word ‘number’and usesome
other word, such as *plurality’ or ‘cardinality’, but in doing so we
should really be begging the question.) In the same way we denote
by the symbol ‘2’ the number of any class which can be put into
one-to-one correspondence with a pair of fingers, by ‘5’ the num-
ber of any class which can be put into one-to-one correspondence
with all the fingers of one hand, and so on.
It was Cantor’s idea to extend the notion of the sequence of finite
numbers, 1, 2, 3, 4, 5, 6, ..., to a sequence of transfinite numbers.
These might be denoted by A1, Az, A3, As, A5, A, ++- Just as the
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finite numbers were associated with certain model finite classes ~
we used our fingers — so the transfinite numbers must be associated
with certain model infinite classes. The simplest and most funda-
mental of all infinite classes seems to be the class consisting of all
the natural numbers. Consequently we denote by 4; the number
of any class which can be put into one-to-one correspondence with
this particular class. Before attempting to find model classes with
which to associate the other s, let us investigate some classes
which have the number A;.

Think back to our original problem of the squares of all natural
numbers. We can set up a one-to-one correspondence between them
and the natural numbers in the following way:

1, 2, 3, 4, ey My e

1i11$¢¢ {

4, 9, 16, 25, 36, 49, ., #%, ...

Now it is true that we cannot show, as we can in the case of two
finite classes, the correspondence which exists between every mem-
-ber of the first class-and the associated member of the second class,
up to and including the /ast members of each class. There simply
is no last member of either class. On the other hand, it should not
be difficult for our minds to transcend this difficulty. For we know
we are safe in saying that corresponding to every number (1) of the
first class there is a number (n2) of the second, and, conversely,
corresponding to every number (72) of the second class there is a
number (7) of the first. Consequently a one-to-one correspondence
between the two classes does exist, and we are in a position to say
that the class of the squares of all natural numbers has the trans-
finite number A;.

“Similarly the class of all even numbers has the transfinite number
Aj. The correspondence in this case looks like this:

1, 2, 3, 4, 5, 6, v Ty e

iiiiiii {

4, 6, 8, 10, 12, 14, ..., 2n, ... :
Again, the class of all odd numbers has the transfinite number 4,,
for we can write
1, 2, 3, 4
3

2 5’ 7’

6, 7.

. n o ..

t

3, . 2n-1,..

£

-
-
-

©ern
el

1, 11,
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Tt may already have dawned on some of us that something in-
credible is going on here. In each of the three examples discussed
the class of natural numbers has been put into one-to-one corre-
spondence with a part of itself. In other words, wehave beendemon-
strating that the whole is equal to part of itself! This verdict is a
direct contradiction of the familiar assumption, first met with in
geometry, that the whole is equal to the sum of its parts and is there-
Jore greater than any of them. No doubt we have forgotten ~ if in-
deed it was ever pointed out to us — that this assumption refers to
finite magnitudes. We are now working with infinite magnitudes
for which the assumption, as we can see, is no longer a consistent
one.

The whole is equal to part of itself. If ever a conclusion violated
common sense, this one is it. But go to the trouble of re-reading
the argument which leads to this conclusion. You must admit that
there is nothing in the argument itself that violates common sense.
As a matter of fact, the principle upon which the entire argument
hinges is no more complicated or mysterious than the principle
involved in ordinary counting, for the two are identical.

Moreover the conclusion that the whole may be equal to a part
of itself can be turned to a useful purpose. At the beginning of this
chapter we rather vaguely described an infinite class as ‘one which
cannot be exhausted by counting over any finite period of time.’
‘We can now, with Cantor, define an infinite class as ‘one which
can be put into one-to-one correspondence with a part of itself.”

One more point. The three examples cited lend weight to the
argument that the class of natural numbers is the proper class with
which to associate A4,, the smallest transfinite number. Note that
in each of these examples the natural numbers were thinned out,
yet the number of members of the resulting classes remained the
same. The thinning-out process can be carried on indefinitely, and
always with the same result. Thus all the classes

4,8,12,16,20,24, ..., 4n, ..,

8, 16, 24, 32, 40, 48, ..., 81, ..,

100, 200, 300, 400, 500, ..., 1007, ...,
10100, 2,10100, 3,10100, ..., 72,1010, ...,

have the same transfinite number as the class of all natural num-

bers. .

148



PARADOXES OF THE INFINITE

Now let us turn out attention to the problem of finding an infinite
<lass whose number is greater than A4;. One possibility that may
suggest itself is the class of all rational numbers.

We recall from algebra that a rational number is defined as one
which can be written as the quotient of two whole numbers. For
example, 2/3, --5/8, and 4/7 are rational numbers. It is at once
evident that the class of rational numbers includes the class of
natural numbers, for 1 can be expressed as 1/1, 2 as 2/1, 3 as 3/1,
and so on. Again, all ordinary decimals are rational numbers, for
such a decimal as 3-579 can be written as 3579/1000, Finally, all
repeating decimals are rational numbers, for 0-3333333 ... can be
written as 1/3, 0-3454545 ... as 19/55, 2-4272727 ... as 267/110, and
so on. For convenience we shall restrict our attention to positive
rationals. Consequently we shall be considering all numbers of the
form p/q, where p and g are natural numbers,

An important property of the rational numbers lies in the fact
that they are ‘dense’. By this it is meant that between any two
rational numbers there are infinitely many otherrational numbers,
For example, between 0 and 1 we can point to the numbers

12345  n_

PP 11: ’in_—f:f’ TTH
between 0 and 4, the numbers

3» §: ‘1_39 '177: 2‘]?3 * 4’3{;"13 eery
and so on, Because of this property we might well expect the trans.’
finite number of rational numbers to be greater than A4;. Cantor
showed that this is no# the case. His proof runs as follows:

The class of all rational numbers can be arranged as shown in
Figure 87. Note that in each horizontal row the successive denoms
inators are 1, 2, 3, 4, 5, 6, ..., while all the numerators in the first
row are 1, all those in the second row are 2, all those in the third
row are 3, and so on, Note also that every fraction in which the
numerator and denominator have a common factor has been en»
closed in biackets, If these particular fractions are deleted, then
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every rational number appears once and only oncé in the array.
Following the path indicated by the arrows, a one-to-one corre«
spondence can be set up between the natural numbers and the
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F16G, 87. ‘Counting’ the rational numbers

rational numbers by pairing with 1 the fraction 1/1, with 2 the

fraction 2/1, with 3 the fraction 1/2, with 4 the fraction 1/3, with 5

the fraction 3/1, and so on, as indicated in the following scheme:
1, 2, 3, 4, 5 6, 7, 8 9, 10, 11, 12, 13,%...

EERE R
rrr»I¥PT2yIeR P OTOZCT

There may be some objection to the order, or rather the lack of
order, in this set-up. It may be pointed out that the example involv~
ing the correspondence between the natural numbers and their

150



PARADOXES OF THE INFINITB

squares was more convincing, in that the nth square could be ex«
pressed in terms of the nth natural number — that is, as #2. In the
present example there is no such simple relationship between the
nth natural number and the nth rational number. Granted. But
anyone who raises this objection is forgetting an important point
which was emphasized earlier - namely, that the particular way in
which the correspondence is set up is immaterial. The important
thing is simply to exhibit some sort of systematic way of pairing
the members of the two classes. A moment’s reflection will make
it evident that this has certainly been done here. We first arranged
the rational numbers in an array in which every number appeared
once and only once. We then indicated the path which should be
followed in pairing each rational number with a natural number.
If we name any rational number at random we can, by going out
far enough in the scheme, find the natural number which corre~
sponds to it. Again, if we selectanaturalnumberat randomwecan,
in the same way, find the rational number which corresponds to it.
To every rational there corresponds one and only one natural, and
to every natural there corresponds one and only one rational. The
correspondence is therefore one-to-one, and the fact that the class
of positive rational numbers has the transfinite number 4; has been
established, .

Our first attempt to find an infinite class whose number is greater
than A, has been a vain one. No doubt a few of us are beginning
to suspect that all infinite classes have the number 4;. Again Can-
tor was able to show how wrong our guesses — based on intuition
-~may be, for he succeeded in proving?!® that the transfinite number
of the class of all real numbers is greater than A;.

For our purposes we may define a real number as any number
which is not imaginary ~ that is to say, which does not involve
4/ =T. Thus the class of all real numbers includes not only the class
of all rational numbers, but the class of all irrational numbers as
well. Examples of irrational numbers are V2, V3,=, e and log,
10. Such a number as V2 arises in geometry when we attempt to
measure the hypotenuse of a right triangle each of whose other two
sides is 1 unit long (see p. 135); the number 45 can be interpreted
as a solution of the algebraic equation x3 =5; the number = is in-
dispensable in the measurement of the circle, as is the number e in
the study of the calculus; and so on.
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‘Before getting into Cantor’s proof we had better make three
observations. The first of these concerns the precise meaning of
‘greater than’ as applied to transfinite numbers. Recall the finite
problem of the theatre and the audignce. There we found we could
say that the number of people is greater than the number of seats
if there are any people standing — that is to say, if there are any
people to whom no seats correspond. Incidentally, we need point
to only one person standing in order to draw this conclusion, We
shall use this same criterion in connexion with infinite classes.
Suppose we are attempting to set up a one-to-one correspondence
between two infinite classes. If we find that to every member of the
first class there corresponds a member of the second class, but that
there are some members (there need be only one) of the second
class to which no member of the first class corresponds, then we
can conclude .that the transfinite number of the second class is
greater than that of the first.

The second observation concerns the possibility of finding a
uniform representation for all real numbers. Such a representation

is furnished by non-terminating decimals. It was pointed out, in

connexion with the definition of a rational number (page 149), that
any repeating decimal is equivalent to a rational number. Con-
versely, every rational number is equivalent to a repeating decimal.
Thus 1/3 can be expressed as 0-333333333...,10/9 as 1-111111111
ouey 63/55 as 1145454545 ..., and 10/7 as 1-42857142857 ... Even
such numbers as 3 and 5/2, which we would ordinarily write as the
terminating decimals 3-0 and 2-5, can be written in non-terminat-
ingformas2-999999999...and 2-499999999... Real numbers which
are not rational - that is to say, irrational numbers —~ can be ex-
pressed as non-terminating decimals which do not repeat. Thus
+/2 can be expressed as 1-414213562 ...,  as 3-141592654 ..., e as
2-718281828 ... (here the group ‘1828’ appears to repeat, but.does
not do so after the first nine decimal places), log, 10 as 2:302585093
eesy and so on.

Our third observation is to the effect that we shall restrict our
attention to the real numbers between 0 and 1. We shall show later
how to set up a correspondence between these numbers and all
Dositive real numbers.

And now for Cantor’s proof. The gist of the argument is as fol-
Iows. We shall assume that a one-to-one correspondence has been
established between the natural numbers and the real numbers
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from 0 to 1. We shall then exhibit a number, also between 0 and 1,
which cannot possibly be included in the scheme - in other words,
a real number to which no natural number corresponds.

In the assumed set-up let us denote the successive digits of the
first real number, expressed as a non-terminating decimal, by ai,
az, as, aa, as, ..., those.of the second number by by, b2, b3, bs, bs,
..., and so on. Then the correspondence between the numbers will
look like Figure 88. Remember we are assuming that a// real num-
bers between 0 and 1 appear in the array at the right. We now con=-
struct a number, denoted by -z1222324752627 +-., i the following
way. Proceeding along the diagonal line of the figure, we choose
z different from a3, z» different from b, z3 different from c¢3, 24
different from dj, zs different from es, and so on.

Now this new number obviously lies between 0 and 1. Further-
more it is not to be found anywhere in the array of real numbers,
for it differs from the first number in the first decimal place, from

Natural
Number Real Numbeér

1 D Q\Grﬂzdaa‘as¢301¢80.0000
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the second number in the second decimal place, from the third
number in the third decimal place, and so 6n, Consequently to this
new number corresponds 7o natural nurbet in the left-hand col-
umn, It follows that our assumption that the one-to-one corre«
spondence could be established is false, and that the transfinite
nhuaizbjr of the class. of all real numbers between 0 and 1 is greater
/ 1.

We shall denote this new transfinite number by the symbo} C.

‘We might be tempted to identify it with Az, the transfinite number
pext greater than 44, That C and A4 are the same is perhaps true,
yet no one has ever been able to prove it. In other words there may
be a transfinite number greater than A4; and at the same time less
than C. The question is still an open one, (See note in Appendix,
page 221.) .
Xn order to show that the class of qll positive real numbers also has
the transfinite number C, we shall resort to a geometrical demon-
stration which may be somewhat more convincing than the rather
abstract arithmetical demonstrations we have used so far.

Anyone who has ever seen a graph knows how we can represent

" real numbers by means of points on a straight line, Using a half-
line - since we are working with positive numbers only — we call

3 4
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the end point O and think of the line as extending indefinitely to
the right, as in Figure 89, Dividing the line into equal segments of
an arbitrary length, we label the successive points of division with
the numbers 1, 2, 3, 4, 5, 6, 7, ... The points midway between the
points of division are labelled , 3, §, %, %, ...,andso on. In the same
way we associate any real number » with some particular point -
namely, that point which is at a distance of 7 units from O. (The
point O itself is associated with the number 0.) What we actually
do, whether or not we have ever thought of it in this way, is to set
up a one-to-one correspondence between the real numbers and the
points of a Jine.
Once the correspondence between the positive real numbersand
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the points of the half-line OR is established, the problem of show-
ing that all positive real numbers can be put into one-to-one corre-
spondence with the real numbers between 0 and 1 reduces to the
problem of showing that all points of the half-line. OR can be put
into one-to-one correspondence with the poinis of the interval from
Otwl.

The second of these problems is handled in the following way.
On the half-line OR construct the rectangle OLMN as shown in
Figure 90. Make the length OL of the rectangle 1 unit long; its
height is immaterial, Lét P be any point of OL. At P erect a line
perpendicular to OL. This line meets the diagonal OM at S, Draw
NS, and extend it to meet OR at Q. The point P of OL is thus

N 4

O EQGFH L& < TR
' F16.90

paired with the point Q of OR. In exactly the same way, Py is
paired with Qy, P> with 0, and 50 on. Conversely, given the point
0 of OR, the corresponding point P of OL can belocated by drawe
ing ON and dropping a perpendicular to OL from the point § at
which ON meets OM, The correspondence is obviously one-tge
one, for to every point of OL corresponds one and only one point
of OR, and to every point of ‘OR corresponds one and only one
point of OL,

Our argument not only proves that the class of all positive real
numbers has the transfinite number C, but uncovers a new and
startling paradox as well. For we have just shown that there are no
more points in a line of infinite length than in a line segment one unit

/
long! .
If we set out to look for a transfinite number greater than C, it
might occur to us to investigate the class consisting of all the points
of a plane. For surely there are more points in a plane than in a
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line. But are there? We ought by this time to have learned to be
suspicious of our intuitive guesses.

In order to work with points of a plane we extend the relation-
ship between single real numbers and points of a line to a similar
relationship between pairs of real numbers and points of a plane.
Thus in Figure 91 the point P;, which is 2 units from OY and 3
units from OX; can be represented by the pair of real numbers @,

AY

e Doty ¢ B} (2,8)

*P (zy)

Fo) Y. e X
F16. 91,

« 3), Similarly, any point P of the plane can be made to correspond
to the pair of real numbers (x, y), in which the first number repre-
sents the distance of P from OY in the direction of OX, and the
second number the distance of P from OX in the direction of OY.
The correspondence is evidently one-to-one, for to every point
there corresponds one and only one pair of numbers, and to every
pair of numbers there corresponds one and only one point. (It is
to be noted that since we are confining our attention to positive
real numbers, we are restricted to those points which lie to the
right of O ¥ and above OX. The representation of pointselsewhere
in the plane involves the use of negative numbers.)

Now in Figure 92 consider the square OLMN, each side of
which is one unit long, and the line segment OS, which is also one
unit long. We shall show that to every point P of the square there
corresponds a point Q of the unit segment.
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Let the point P be represented by the pair of numbers (x, »).
Since both x and y are less than 1, they can be expressed (see page
153) as the non-terminqting decimals, ’ :

X = X1X2XIX4XSX6XTXG oveg
Y = V1V2Y3Y4Y5V6YTV8 oo

Now from the successive digits of the numbers x and y let us form
the number

Z = X1V 1X2Y2X3V3X4YV4X5)5 vee

(For example, if x =3427427427 ... and y=+6129846035 ..., then
2=36412279482476402375 ...) This number certainly has a value
between 0 and 1, and can therefore be represented by a point Q of

AY

N M

P (@m)

O
Ot
&

F16.92

the line segment OS. That is to say, given the point P of the unit
square, we can determine x and y, and therefore z, and so can
Jocate the corresponding point Q of the unit segment.

Our argument shows very simply that there are no more points
in the unit square than in the unit line® The proof can be
extended to show that there are as many points in the unit line as
in a plane of infinite extent. Indeed, if we wish to carry the argu-
ment still further, Wwe can show that there are as many pointsina
line one inch long as in all of three-dimensional space. Finally, if
we wish to go to an extreme which appears to be utterly ridiculous,
we can prove that there are as many points in a line a billionth of an
inch long as there are in the whole of a space of 4, 5, 6, vy 1, or
even A, dimensions{*® "
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‘The problem of finding a class whose transfinite number is'greater
than C is somewhat more complicated than the problems we have
so far tackled. And most of these have no doubt been complicated
enough. We shall therefore content ourselves with the statement
- that it has been proved that there is an infinitude of transfinite
numbers, and that they can be arranged in order of increasing
size, Just as there is no last — or largest - natural number, so there
is no last ~ or largest — transfinite number.® |

Before leaving the transfinite numbers entirely, however, let us
look at the results of certain arithmetical operations on them. If
n is any finite natural number, and if 4, and C are the transfinite
numbers with which we are acquainted, then, incredible as it may
seem, the following conclusions can be shown to be true.

Al +n =A19

Ay A=Ay,

n.Ay =Aj,

Ay A1 =4y,

(Apr=Ay,
Q41 =(A41 =C,
C+n=C,
C+41=C,
C+C=C,
n.C=C,
C.C=C,
(©€)*=C,

(C)41=C, .
(2)¢ =(C)C =a new ttansfinite number, _

*

We need not think, in closing this chapter, that we have seen
the last of the infinite and its vagaries, In the following chapters
— particularly the next two - there is ample evidence of the fact
that the notion of infinity is one of the greatest.enemies of the
mathematician’s peace of mind.

and so on.
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CHAPTER EIGHT

Paradoxes in Probability

IN 1654 the Chevalier de Méré, gambler and amatéur mathe-
matician, proposed to Blaise Pascal a problem concetning the

~division of stakes in a game of dice. Pascal communicated the
problem to Fermat, and from the correspondence! between these
two men arose what has subsequently become the modern theory
of probability. Thus did a simple gambler’s problem give birth toa
powerful technique which constitutesthe very foundation of mathe-
matical statistics, and, through statistics, of much of the mathe-
matics of economics and industry,

Most mathematical theories, in the course of their development,
have suffered severely from what might well be called ‘growing
pains’. The theory of probability is no exception. Numerous-con=
tradictions have arisen and have led to bitter controversies over
concepts of the most fundamental nature, It is these contradictions
with which we shall be concerned. In some instances we may not
be able to arrive atan entirely satisfactory solution of the difficulty,
A few of the problems involve high-powered ideas into which we
shall not have time to go in detail, while others are still in dispute
among even the better mathematicians, - 7

In order to see how easily misunderstandings may arise, cone
gider the type of problem originally discussed by Pascal and
Fermat. Suppose that two players, 4 and B, contribute equally
to a stake of £12. They agtee that the first player who makes
3 points shall win the entire stake. After 4 has won 2 points,
and B has won 1, they agree to stop. How should the stake be
divided? .

Offhand this problem appears to be very simple. We may well
argue that since 4 has twice as many points as B, A’ share should
be twice B’s, That is to'say, 4 should take £8, and B £4. But now
suppose they were to play the next point - the one they have agreed
not to play. If 4 were to win this point, the whole stake of £12
would be his. If he were to lose, the score would then be 2 to 2,and
they would split the £12 evenly. Thus A is sure of getting £6 anye
way. And assuming that he has an even chance of winning the next
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point, his share of the remaining £6 should be half that amount.
In other words, 4 should take £9, and B£3.

It is not difficult to see that the second solution is correct if 4
and B are to stick to their original agreement concerning the win-
ning of the stake, Had they agreed to divide the stake in propor-
tion to their scores at any stage of the game, the correct solution
would of course be the first one.

But we must not jump too guickly into the midst of diffi-
culties., We had better spend a few moments discussing some of
the basic principles of probability, in order to prepare ourselves
for the troubles that lie ahead.

*

Laplace, an eminent French mathematician of the late eighteenth
and early nineteenth centuries, once described the theory of prob-
ability as nothing but “common sense reduced to calculation’. Let
us see fo what extent the following anecdote justifies this descrip-
tion.

Two college students are trying to decide how to pass an even-
ing. They finally agree to let their decision rest on the toss of a coin.
Heads, they go to the cinema, Tails, they go out for a beer. And
if the coin stands on edge, they study!

"This story is not as trivial as it may seem, for we can learn much
from it. Common sense, basing its judgement on past experience,
tells us that the boys will be spared the necessity of studying. In
other words we know instinctively that the coin will not stand on
edge, but that it will come to rest with either heads or tails
showing. Moreover, if the coin is a fair one - if it doesn’t have
heads, say, on both sides ~ we are morally certain that the
possibility of heads and the possibility of tails are equally likely
possibilities.

Now the theory of probability is based on the assumptions we
make concerning such questions as these: What is the probability
that the coin will stand on-edge? What is the probability that it will
show either heads or tails? What is the probability that it willshow
heads? What is the probability that it will show tails?

In order to discuss these questions in mathematical terms, it is
necessary to assign numerical values to the various probabilities
involved. Suppose for the moment that we denote by p the num-
erical value of the probability that the coin will show heads, Since
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it is equally likely that the coin will show tails, the probability of
tails must also have the value p. But we are certain that the coin
will show either heads or tails. Hence 2p must have the value of
certainty - of the probability that an event which is bound to occur
will occur, We can choose for certainty any value we please. It is
customary, and convenient, to clioose the value 1. That is to say,
we assume that 2p =1, Then the probability that the coin will show
heads is ¥; that it will show tails, 4; and that it will show either
heads or tails, ++1%, or 1. : -

We can generalize our definition of the measure of probability
in the following way: Suppose that the number of ways in which a
certain event can happen is h, and that the number of ways in which
it can fail to happen is f. Suppose further that the ways in which the
event can happen or fail to happen are all equally likely. Then the
probability that the event will happen is h|(h--f), the probability that
it will fail to happen is f{(h 1), and the probability that it will happen
or fail to happen is h/(h+f) +f](h+f) =(A+F)/(h+F) =1. For ex=
ample, suppose a single marble is to be drawn from a box containe
ing 3 red marbles and 7 white marbles. Then the probability of
drawing a red marble is <, that of drawing a white marble-is
7%, and that of drawing a red marble or a white marble is % +3%,
orl,

In our example of the coin, the only question we have left un~
answered is that which concerns the probability that the coin will
stand on edge. We have agreed that the coin cannot stand on
edge, but that it must fall in either of two ways — with heads
showing or with tails showing, That is to say, the number of ways
in which the coin can stand on edge is 0, and the number of ways
in which this event can fail to happen is 2, Therefore the probability
that the coin will stand on edge is £, or 0. The same reasoning can
be applied to the problem of the box of red and white marbles,-
Since there is no possible way of drawing a marble of any colour
other than red or white - say black — then the probability of drawe
ing a black marble is 0. ' . .

To summarize our findings briefly, we shall say that the probe
ability of the occurrence of an impossible event is 0, the probability
of the occurrence of an event which is certain to occur is 1, and the
probability of the occurrence of a doubtful-but-nevertheless-pos-
sible event is some fraction between 0 and 1.

Now let us consider a few straightforward examples concerning
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throws with dice. These examples will serve not only to fix in our
minds the ideas just presented, but will also introduce us to one or
two elementary short-cuts which we may find useful later on,
st die st die

OREODED HOEEEEE
ODHREEE DEEEEH

2nd die 2nd die

st die 1st die

HFEEEEE COOODREHA
ORRNDEE OOOEEH

2nd die 2nd die

-1st die 1st die.

HENEEE HEDEEE
ONEEHEE OOEREER

 ddie 2nd die
F1G. 93, There are 36 possibl9 throws with a pair of dice

What is the probability of throwing a two with one throw of a
single die? Since the die has six faces, any one of which may turn
up, there is a total of six equally likely ways in which the desired
event can occur or fail to occur. There is only one way in which it.
can occut. Therefore the probability is £.

What is the probability of throwing a two or a three with one
throw of a single die? Again there is a total of six ways in which
the proposed event can occur or fail to occur. There are two ways
jn which it can occur. Therefore the probability is §, or 4. The
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same result can be arrived at in another way. Noting that the prob-
ability of a two is %, and that the probability of a three is %, we can
say that the probability of a two or a three is ¥ +%, or 4. This
argument can be extended to the following general principle: If
215 D2, D3, -++5 P, Gre the respective probabilities of n mutually ex-
clusive events, then the probability that one of the events will occur
is the sum of these probabilities, or p1 +p2+p3 -+ ~. +p,. (The throw-
ing of a two and the throwing of a three are mutually exclusive
events since they cannot both happen in one throw with a single .
die.)

What is the probability of throwing two ones with one throw
of a pair of dice? Since every number on the first die can be associ-
ated with 6 numbers on the second, and since there are 6 numbers
on the first die, the dice can fall in any one of 6.6 =36 possible
ways. This point is illustrated in detail in Figure 93. Of the 36 pos-
sibilities, only 1 is favourable — that in which the number on both.
dice is one. Hence the probability of throwing ‘snake-eyes’ is 4,
Note that this same result could have been obtained by the follow-
ing argument. The probability that the first die turns up a one is &,
and the probability that the second die turns up a one is also .
Therefore the probability that both dice turn up ones is () (3), or
. In general we can say that if p1, p2, p3, ..., P, are the respective
probabilities of n independent events, then the probability that all n
of the events will occur at once is the product of these probabilities,
or(p1) (p2) (P3) ... (py,). (The throwing of a one with the first dicand
the throwing of a one with the second die are independent events
because the first has no effect whatever on the second.)

One more general point. Note that if p is the probability that a
certain event will occur, then the probability that it will fail to occur
is 1 ~p. Thus, in our last problem, if 7 is the probability of throw-
ing 2 ones with a pair of dice, we can conclude that the probability
of not throwing 2 ones is 1 — (%), or 3%. This result is easily verified
by noting that if the event canhappen in only 1 of 36 possible ways;
then it can fail to happen in 35 of those 36 ways.

*
We are now ready to begin our excursion into the paradoxes of
probability. Our first example is of some historical interest in

that D’Alembert, a first-rate French mathematician of the eigh-
teenth century, failed to solve it correctly.
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In two tosses of a single coin, what is the probability that heads
will appear at least once?

Noting that heads on the first toss can be associated with either
heads or tails on the second toss, and that tails on the first toss can
similarly be associated with either heads or tails on the second

—-® @ O O
-9 9 90

¥16. 94. The four possible results of two tosses of a single coin

toss, the total number of possible cases is 4, as indicated in Figure
94. Of these 4, the first 3 are favourable in that they contain at
least 1 head. Therefore the desired probability is 3.

When this problem was proposed to D’Alembett in 1754, he
argued as follows:? There are only 3 cases: heads on thefirst throw,
or heads on the second throw, or heads not at all. Now 2 of these
3 cases — the first 2 - are favourable. Therefore the desired prob«
ability is %.

1t does not take long to see why this second solution is wrong,
D’Alembert’s first case included the first wo cases shownin Figure
04, In other words, ‘heads on the first throw’ meant, to D’Alem-
bert, ‘heads on the first throw regardless of what happens on the
second throw’, whereas ‘heads on the second throw’ meant “tails
on the first throw followed by heads on the second throw.” It is
true of D’Alembert’s system that one of his three possibilities must
occur, and that the possibilities are mutually exclusive. The trouble
isthat they are not equally likely. It is evident at once from Figure
94 that ‘heads on the first throw regardless of what happens ont
the second throw’ (cases 1 and 2) is twice as likely as ‘tails on the
first throw and heads on the second’ (case 3).

The solutions of the following two problems, which involve
difficulties similar to those just discussed, will be found in the
Appendix.
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Paradox 1. Three ¢oins are tossed at once. What is the probabili)y
that all three come down alike ~ that is to say, that all three are
either heads or tails?

(a) We can say with assurance that of the three coins tossed, two
of them must come down alike - both heads or both tails. What of
the third coin? The probability that it is heads is 4; that it is tails,
also 1. In cither case the probability that it is the same as the
other two is 4. Consequently the probability that all three are
alike is 4. ’

(b) But now suppose we use an argument involving the multi-
plicative and additive principles discussed earlier. For the moment.
let us fix our attention on heads. The probability that the first coin
is heads s 1; that the second is heads, 4; and that the third is heads,
1. Hence the probability that all three are heads is (3) (3) &), or 3.
In exactly the same way, the probability that all three are tails is 3,
Therefore the probability that all three are alike ~ either heads or
tails-is 3+3, or 4.

Which result are we to accept,  or 32

Paradox 2. Peter and Paul (favourite characters with writers on”
probability) play a game of marbles. Peter has two marbles, Paul
one. They roll to see which comes nearer some fixed point ~ say a
stake set in the ground, Assuming that they are equally skilful, what
is the probability of Peter’s winning? ,

(a) Since the players are equally skilful, all 3 marbles have the
same chance of winning, But 2 of the 3 marbles are Peter’s. There-
fore the probability that Peter will win is %.

(b) There are 4 possible cases, Of Peter’s 2 marbles, both can
be better than Paul’s, or the first can be better and the second
worse, or the second can be better and the first worse, or both can
be worse. Of these 4 cases, the only one which makes Peter lose
is the last - that in which both of his marbles are worse thansPaul’s.
Hence the probability that Peter will win is ..

Which result are we to accept, % or §?

*
A number of paradoxes were discussed by the French mathema-
tician J. Bertrand in his Calcul des probabilités, a scholarly treatise

which appeared in 1889. One of these in particular has beenused as
an illustrative example in almost every subsequent textbook on
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probability. Generally known as ‘Bertrand’s box paradox’, it runs
as follows.®

Three boxes are identical in external appearance. The first box
contains two gold coins, the second contains two silver coins, and the
third contains a coin of each kind — one gold and one silver. A box is
chosen at random. What is the probability that it contains the unlike
coins ?

This problem appears to be straightforward enough. There are
3 possible cases: gold-gold, silver-silver, and gold-silver. Since the
boxes are identical in appearance, the 3 cases are equally likely.
And of the 3 only 1 — the last — is favourable. Therefore the desired
probability is 4.

Granting that the solution just suggested is correct (which it is),
whatis to be done with the following argument ? Suppose we choose
a box and remove one of the two coins in it. Regardless of whether
this coin is gold or silver — it is not at all necessary to examine it —
there are only 2 possible cases: the remaining coin is either gold or
silver. In other words, it is either like or unlike the coin that has
been removed. Of the 2 specified possibilities, 1 is favourable.
Hence the probability that the second coin is unlike the first is 3.
We are therefore led to the startling conclusion that the removal
of one coin from one of the boxes raises the desired probability
from % to 3! There is certainly something wrong with this argu-
ment, for the mere removal of one coin does not increase our
knowledge of the nature of the remaining coin.

A number of solutions of this paradox have been proposed, and
special techniques have been devised to take care of this difficulty
and of similar difficulties.® Let us see if Bertrand’s own ideas about
the matter are sufficiently satisfactory.

Bertrand maintained that, once one coin has been removed, the
possibilities subsequently specified are not equally likely. That is
to say, if we suppose that the first coin removed is gold, the second
coin is less likely to be silver than gold. Why ? Well, for simplicity
denote the box containing the two gold coins by By, that contain-
ing the two silver coins by Bss, and that containing one of each by
Bgs. Then if the first coin removed is gold, it must have come from
either By, or Bys — it obviously could not have come from Bss.
Now the chance that the first coin removed from By, is gold is
evidently 1, or certainty; whereas the chance that the first coin re-
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moved from B, is gold is 4. Hence, if a gold coin has been drawn,
it is less likely that it came from B,, than from B,,. Consequently
the second coin is less likely to be silver than gold. In the same
way, if the first coin is silver, it is less likely that it came from B,,
than from B,,, so that in this case the second coin is less likely to
be.gold than silver, Regardless, then, of what the first coin is, the
second coin is less likely to be unlike it than like it. It follows that
the desired probability is not 4, but less than 4, The second solution
of ‘the problem is- therefore incorrect, and our faith in the first
solution is restored. .

In all the problems so far discussed the total number of possibil-
ities — the number of ways in which the event under consideration
can happen or fail to happen — has been finite. A host of contra-
dictions arise when the number of possibilities is infinite, as is the

.case in the next few examples,

Given a line segment. AB and any point P on AB, A point of AB is
chosen at random. What is the probability that the point chosen is P?

Here the number of possibilities is evidently infinite, for it was
shown in Chapter 7 that a line of finite length contains an infinite
number of points. For the moment let us ignore the point P and
consider a simpler problem. Suppose we divide the segment 4B
into 10 equal intervals, as in Figure 95. When we say that a point
of ABis ‘chosen at random’ we mean simply that all the intervals
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. are equally likely to contain the point. Hence the probability that
the point chosen lies in any specified interval ~ say the interval
labelled k ~ is %. Similarly, if AB is divided into 100 equal inter-
vals, the probability that the random point is contained in any
specified interval is 335, And so on. Note that in every case the
probability is the ratio of the length of the interval to the length of
the whole segment. We can safely generalize this notion and state
the following principle. If a point is chosen at random on a line seg-
ment.of length L, the probability that it falls in a specified interval of
length k is kL.
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Let us see what happens when we try to apply this principle to
our original problem. For simplicity call the length of 4B 10
inches. Now P, being a point, has no length. In other words, P
occupies an ‘interval’ of length zero. But the probability that the
random point falls in an interval of length zero is 3%, or 0. And
zero probability, as we saw earlier in the chapter, means that the
event cannot occur. Therefore it is impossible for the random point
to coincide with P. Since P is any given point of 4B, it follows that
the random point cannot coincide with any point of the line. Hence
the random point is both a point of the line and yet not a point of
the line ~ a nice dilemma!

a4 _4:,'}(— B
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To get round the difficulty here we must attack the problem
from the point of view of limits, a notion we discussed in connex-
ion with infinite series. First suppose we make P the mid-point of
an interval of length 1 inch, as in Figure 96. Then the probability
that the random point lies somewhere in this interval is . If we
make the interval 0-1 inch long, keeping P the mid-point as before,
the probability is t25. If we make the interval 0-01 inch, the prob-
ability is t&+; if 0-001 inch, 35555; and so on indefinitely.

Now the limit of the contracting interval is the point P itself.
Consequently the probability that the random point coincides with
P is the limit of the sequence of probabilities that the point lies
somewhere in the interval at each successive stage of its contrac-
tion. If we continue, at each stage, to cut the interval down to %
of what it was, then the probability that the random point falls on
P is the limit of the sequence

1 1 1 1 1 1
10° 100’ 1000’ 10000° 100000° 1000000

The limit of this sequence, as we make the interval about P smaller
and smaller, is zero. But this observation does not necessarily mean
that the probability ever is zero. It simply means that we can make
the probability as near zero as we please by making the interval
about P sufficiently small.
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At the risk of confusing the issue rather than clarifying it, let us
look at a different, but more concrete, example. Suppose thata box
contains 1 red marble and 9 white marbles, and that a single
marble is to be drawn. Then the probability of drawing the red
marble is 7%, If we increase the number of white marbles to 99, the
probability of drawing the red one is 133, If we increase the number
of white marbles to 999, the probability is +s. And so on. As we
o on adding white marbles, the probability of drawing the single
red one becomes smaller and smaller, and we can make it as small
as we please by adding a sufficient number of white marbles. But
the probability of drawing the red marble is never zero ~ the red
marble is always there, and there is always some chance, however
small, that it will be drawn.

In a word, we must distinguish in our minds between ‘zero’ on
the one hand and “infinitely small’, or ‘infinitesimal’, on the other.
We can then say that although the desired probability is, for all
practical purposes, zero, it is, theoretically speaking, not zero but
infinitesimal. This same distinction must be made whenever the
number of favourable cases is finite and the number of possible
cases is infinite.

The contradictions encountered in the following two problems?
can be handled in the manner just discussed,

Paradox 1. Since all even numbers are divisible by 2, the only
even prime number is 2 itself, That is to say, the number of even
primes is 1. But the total number of primes js infinite (see page 36).
Therefore the probability that an arbitrary prime number is even
is zero. This conclusion implies that it is impossible for a prime

number to be even. Consequently the prime number 2 does not
exist.

Paradox 2. The largest known prime number is 2127~ 1 (see p.
36). Hence the number of known primes is finite. But the total
number of primes is infinite. Therefore the probability that an
arbitrary prime number is known is zero. That is to say, it is im-
possible for a prime number to be known. Therefore no prime

numbers are known. "

The following problem® brings to light another difficulty which -

arises when the total number of cases is infinite,
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A real number — rational or irrational - between 0 and 10 is chosen
at random. What is the probability that it is greater then 5?

Using the technique we have developed in connexion with a rans
dom point on a line, we divide a segment 10 units long into two
intervals, each of length 5 units, as in Figure 97, Then the prob-
ability that the number chosen lies in the favourable interval is +%,
ori.

Favourable interval

A ——
0 5 10
F16.97

Let us, for 2 moment, look at a related problem.

A real number — rationgl or irrational — between 0 and 100 is
chosen at random. What is the probability that it is greater than 257

This time we divide a segment 100 units long into two intervals,
the first of length 25 units, the second of length 75 units, as in Fig-
ure 98. The favourable interval in this case is the second one. And
the probability that the random number is greater than 25 is %%,
ori.

Favourable interval
Ve -~ ~

526 1074100
F16.98

On

Now consider the fact that every number between 0 and 25 has
a square root which lies between 0 and 5, and every number be-
tween 25 and 100 has a'square root which lies between 5 and 10,
We can therefore interpret the results of our two problems in this
way: if.a number between 0 and 10 is chosen at random, the prob-~
ability that it is greater than 5 is 4; wheréas if the square of the
number is chosen at random, the probability that the number is
greater than 5 is 3!

What is going on here? Should not the desired probability be the
same regardless of whether the number or its square is chosen at
random? Let us scrutinize the two problems more carefully.
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In the first problem we probably based our assumption that the
two intervals were equally likely on the idea that the real numbers
between 0 and 10 are evenly distributed along the line — that there
are, so to speak, just as many real numbers between 0 and 5 as be-
tween S and 10. But now consider the squares of all such numbers.
Every number in the interval 0 to 5 of Figure 97 has a square which
lies in the interval 0 to 25 of Figure 98; and every number in the
interval 5 to 10 of Figure 97 has a square which lies in the interval
25 to 100 of Figure 98. There are, in other words, just as.many real
numbers between 0 and 25 as between 25 and 100. (This idea is not
anew one, In the last chapter we established the fact that there are
as many points ~ corresponding to real numbers — on a line of
finite length as on a line even of infinite length.) We are therefore
Jed to the conclusion, whether we like it or not, that the intervals
0to 25 and 25 to 100 are equally likely to contain a number picked
at random between 0 and 100, .

But in the second problem we went on the assumption that the
numbers between 0 and 100 are distributed evenly along-the line
and that there are, so to speak, three times as many numbers be-
tween 25 and 100 as between 0 and 25. That is to say, we assumed
that the interval 25 to 100 is three times as likely to contain the
random point as the interval 0 to 25. This assumption, after all, is
a reasonable one. It is the one we should have made had we had no
knowledge of the first problem, but had been thinking simply of a
number picked at random between 0 and 100,

The way out of all this confusion is not entirely clear. The diffi-
culty is concerned with the proper choice.of a set of equally likely
cases, a matter on which the mathematicians themselves are not
agreed. One group, following Bertrand, would dismiss all such
problems by pointing out that infinity is not a number and that we
cannot describe, in terms of finite probabilities, choices made at
random from an infinitude of Possibilities. This attitude indeed
offers a way out, but not a very happy one, for it requires Jjunking
mat;ylresults and techniques which have been found to be extremely
useful. .

Perhaps-the most satisfactory attitude for us to take is the prage
matic one. When the number of cases is infinite, we will grant that
the choice of a set of equally likely cases is arbitrary, but choose
that set which common sense tells us is the most practical for the
particular problem under consideration. Thus, in the two problems
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we have been discussing, the set used in the first problem cer-
tainly appears to be more practical for that problem than the set
psed in the second problem would be. What man in the street, con-
fronted with the problem of determining the probability that a
random number between 0 and 10 is greater than 5, would go off
into calculations concerning the square of the random number and
come out with the-answer $? The common-sense answer is 4.

‘We shall see shortly that the pragmatic attitude is not always
entirely satisfactory, but the great argument in favour of it is the -
_ status of the theory of probability today. The theory is what it is

because those who were responsible for its development were prac-
tical men who had the good common sense to make practical
assumptions when they needed them. Had they stopped to wrangle
over every theoretical point which arose, the theory might have
died almost at birth. Instead, it has grown to bea powerful weapon
of research in many fields.

The following paradoxes® illustrate how difficult it frequently is
to decide what set of equally likely cases is the most workable ina
given situation.

Paradox 1. Of a certain substance, it is known only that its speci-
fic volume lies between 1 and 3. Itis therefore reasonable to assume
that its volume is as likely to lie between 1 and 2 as between 2 and 3.

But now consider the specific density of the substance. The vol-
ume and density are related by the formula D =1/V. Since the vol-
ume lies between 1 and 3, the density lies between 1 and 4. And
since we know nothing else about the density, it is reasonable to
assume that it is as likely to lie between 1 and % as between 4 and 4.
.Consequently the volume, which is the reciprocal of the density, is

" as likely to lie between 1 and £ as between £ and 3; that is to say,
between 1 and 1-5 as between 1-5 and 3. This conclusion, of course,
contradicts our first conclusion that the volume is as likely to lie
between 1 and 2 as between 2 and 3.

Paradox 2. A chord is drawn at random in a given circle. What is
the probability that the chord is longer than one side of the equilateral
triangle inscribed in the circle?

(2) In Figure 99, let ABC be the inscribed equilateral triangle, and
let DAE be tangent to the circle at 4. The random chord can be
thought of as drawn through A4 and any other point of the circle.
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Any chord lying within the shaded 60° angle BAC is longer than
one side of the triangle, and is therefore a favourable case. Any
chord lying within either of the 60° angles BAD or CAE is shorter

D i E

Fic. 99

than one side of the triangle. In other words, all possible cases lie
within the 180° angle DAE, and all favourable cases within the 60°
angle BAC. Consequently the desired probability is £, or 3. The
temporary fixing of the point A is of course no restriction, for the
same argument would hold regardless of the position of 4.

(b) Next think of the random chord as drawn perpendicular to
the diameter 4K through any point of AKX, as in Figure 100. It is
easy to show that the distance from the centre of the circle to any
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side of the triangle is equal to half the radius of the circle.X In par-
ticular, OM is one half the radius OK, or one fourth the diameter
AK. Now it i evident that if we lay off ON equal to OM, then any
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chord in the interval MN is greater than one side of the triangle.
. The random chord can be drawn through any point of AK, Chords
which are longer than one side of the triangle are, as we have seen,
those which lie in the interval MN - an interval whose length is
half that of AK, Therefore the desired probability is 4. The tems=
porary fixing of the diameter 4K is no restriction, as the same argu-
ment would apply for any other position of the diameter. ’

(c) In Figure 101 a circle has been inscribed in the given equi-
lateral triangle. As was pointed out in (b), the radius of the in=
scribed circle, OM, is half the radius of the original circle. Further-
more, a glance at the figure shows that if DE is any chord whose
distance from the centre is greater than OM, then DE is shorter
than BC; whereas if FG is any chord whose distance from the
centre is less than OM, then FG is longer than BC. Finally, note
that the distance of a chord from the centre of the circleis measured
by the distance of its mid-point from the centre. Now the random
chord can have as it mid-point any point within the large circle,
and the mid-points of all chords having the desired property lie
within the small circle. Hence the probability that the random
chord is greater than one side of the equilateral triangle is the ratio
of the area of the small circle to that of the large circle. If we denote
the radius of the small circle by #, then the radius of the large circle
is 2r, and the ratio in question is nr2/n(2r)2 =rnr2/4nr2 =4,

Let us summarize briefly the results of this rather lengthy ex-
ample, If we assume that the chord, passing through a point onthe
circumference of the circle, is as likely to make one angle with the
tangent as another, then the probability is 4. If we assume that the
chord, drawn perpendicular to a diameter of the circle, is as likely
to pass through one point of the diameter as another; then the
probability is 4. Finally, if we assume that the mid-point of the
chord is as likely 1o be one interior point of the circle as another,
then the probability is 3. What is the most practical set of equally
likely cases here? One guess is as good as another.

(The next two paradoxes involve some knowledge of solid geo-
metryand trigonometry. Theywill be discussed briefly for the bene-
fit of those who are acquainted with these subjects.)

Paradox 3. A plane is chosen at random in space. What is the
probability that it makes an acute angle of less than 45° with the
Dlane of the horizon?
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(a) The random plane can make any .angle between 0° and 90°
with the plane of the horizon. Only angles between 0° and 45° are
favourable. Therefore the probability is £Z, or *5.

(b) From the centre of an arbitrary hemisphere of radius r, the
plane of whose base is horizontal, draw a perpendicular to the
random plane, Then to choose the plane at random is to choose at
random the point where the perpendicular.to the plane intersects
the hemisphere. If the plane is to make an angle of less than 45°
with the horizontal, the perpendicular must intersect the hemi-
sphere at some point of a zone whose area is

27r2(1 — cos 45°) =4nr2 5in2 22.5°,

Then the desired probability is the ratio of the area of the zone to
the area of the hemisphere. This ratio is 2 sin? 22-5°, or -293.

Paradox 4. Two points are chosen at random on the surface of a
sphere. What is the probability that the distance between them is less
than 10 minutes of arc?

(a) Let one of the points be fixed, and through this point draw a
fixed great circle. (These restrictions are only apparent, for the
argument to follow is valid for all choices of the first point and for
all choices of a great circle through that point.) Now divide the
great circle into 2160 equal arcs, each of length 10, Favourable
cases are those in which the second point Jies in one or the other
of the two arcs adjacent to the first point. Hence the desired prob-
ability is 5%, or <000926.

(b) The first point having been fixed, the second point can lie
anywhere on the sphere, If the distance between the two points is
to be less than 10, however, the second point must lic on a zone
whose area is

2nr2(1 —cos 10%) =4nr2 sin2 5,
where 7 is the radius of the sphere. Thetefore the desired prob-
ability is the ratio of this area to that of the sphere - that is to
say, sin2 5/, or -00000212,

This example is remarkable in that the first result is more than
400 times as large as the second!

*

Thelast group of paradoxes showed how difficult it is to determine
the correct set of equally likely cases whenever there happens to be
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more than one possible set. An even more fundamental problem
is that which concerns the precise meaning of ‘equally likely’ - a
notion which is essentially intuitive and difficult to define. Indeed,
the proper definition of ‘equally likely cases’ has split mathemati-
ciansintotwo opposingcamps. On the one hand are the ‘insufficient
reasonists’, who maintain that two cases are equally likely if there
is no reason to think themw otherwise. On the other hand are the
‘cogent reasonists’, who maintain that two cases are equally likely
only if there is some definite reason to think them so. The distinc-
tion is in some ways a rather fine one. As a matter of fact, an in-
sufficient reasonist might well be classed as a cogent reasonist on
the ground that, to him, the most cogent reason for thinking two
things equally likely is the absence of any reason for thinking them
otherwise!**

We who have been following the discussions of this chapter
should probably be classed as insufficient reasonists because of the
fact that we have spent very little time looking for good reasons
why we should assume that two or more cases are equally likely.
Consider, for example, the first of the last four paradoxes discussed
~ the one concerning volume and density. We were told that we
knew nothing of a certain substance other than that its volume had
some value between 1 and 3. In the absence of all other informa-
tion, we assumed that the volume was as likely to lie between 1
and 2 as between 2 and 3. The cogent reasonist would never have
let himself in for the difficulties we encountered in this problem,
for at the very start he would have dismissed the problem as one
which simply cannot be discussed.

The classic example used by the cogent reasonist to confound
the insufficient reasonist is the so-called ‘life on Mars paradox’,
We shall present this paradox in the form of a dialogue between
the cogent reasonist (C. R.) and the insufficient reasonist (I. R.).

C. R.: Tell me, Mr I. R., what in your opinion is the probability
of life, in some form or other, on the planet Mars?

1. R.: H’m, let me see. Well, since I am totally ignorant of the
answer, I shall have to assume that the possibilities of life and no
life are equally likely. Therefore my answer is 3.

C. R.: Very good. But now let us look at the problem from
another angle. What would you say is the probability of no horses
on Mars?
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L R.: Again I confess total ignorance, so again I must conclude .

C. R.: And the probability of no cows?

LR.:Again}

C. R.: And the probability of no dogs?

I R.: Again 4.

[This sort of thing goes on for several minutes, while C. R. names,
let us say, 17 more specific forms of life.]

C. R.: Very well. But now we must conclude that the probability
of all these things occurring at once — no horses and no cows and
no dogs and none of the other 17 forms of life which I specified =
is the product of the individual probabilities, or HDD..to
twenty terms. [If the reader has forgotten the principle involved
here, he should refer back to page 163.] In other words, the prob=
ability that none of these twenty forms of life exists is )29, or
woissss. Am I right so far?

L R. (beginning to understand the trouble for which he is heading):
Why;, yes, I am afraid you are.

C. R.: Thank you. But if the probability that zone of these forms
of life exists is v5z3w7s, what, may I ask, is the probability that az
least one of them exists?

I R.: Unfortunately, I must confess that this probability is the
difference between your result and 1 — that is to say, 1248528

C.R.: And so, Mr L R., we are led to two results concerning
the probability of life on Mars. One of these is -5, and the other is
about 999999 - very near to certainty. Surely one of the two must
be wrong. Can it be that your principle of insufficient reason is at
fault?

Poor Mr I. R.! We have, of course, presented the dialogue as
C. R. might have written it. Perhaps we can find something to say
in defence of I. R. Note that the paradox is based on two assumpe
tions. In both solutions it is necessary to assume that we have
absolutely no information concerning the existence or non-exist-
ence of life on Mars. And in the second solution it is necessary to
assume that the occurrence of one form of life is absolutely inde-
pendent of the occurrence of any other form of life — otherwise the
multiplicative principle used in the argument would not apply. It
is true that both these assumptions might be validina purely hypo-
thetical universe, but the knowledge we have of our own universe
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makes them ridiculous. Once again the question is one of practic-
ality. We do know something of the planet Mars, and we do know
something of the dependence of one form of life on another. These
two facts are sufficient to invalidate the argument of the cogent
reasonist.

Much the same sort of difficulty is involved in a problem, dis-
cussed by Bertrand, concerning weather predictions.*

Suppose one forecaster predicts that it will be fair tomorrow,
and the probability that he is wrong is . Suppose-a second fore-
caster predicts the same, and the probability that he is wrong is
also &. Then the probability that both are wrong would appear to
be () B, or .

But are the two predictions independent? Suppose the two'fore=
casters have been educated at the same school, that they have
adopted the same principles, and that they base their predictions
on the same data. Then if one is wrong, the other will be wrong
also, and the second factor of the above product is not 3, but 1. In
other words, the accord of the two predictions does not lessen the
chance of error.

To cap the argument, suppose that one predicts ‘rain’® and the
other ‘clear’. Assuming that ‘rain’ means ‘rain all day long” and
that “clear’ means clear all day long’, the probability that they are
both right is not (%) (), but, since the occurrence of this event is
impossible, zero,

Perhaps news of this sort should not be spread about. Wealthy
people afflicted with interesting maladies may, if they hear of it,
have less confidence than usual in the coincident opinions of their
three or four expensive specialists.

*

One of the most famous of all probability paradoxes is, like
the problem which opened this chapter, a gambling problem.
This is the ‘St Petersburg paradox’, originally proposed by
Nicolaus Bernoulli in a letter dated September 1713. The
original problem was modified by Daniel Bernoulli — nephew
of Nicolaus — and discussed at length by him in the Transactions
of the St Petersburg Academy. Here it received its notoriety
and its mame. (It may be worth remarking, in passing, that
the Bernoulli family produced eight mathematicians in three
generations!)
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A coin is tossed until heads appears. If heads appears on the first
toss, the bank pays the player £1. If heads appears for the first time
on the second toss, the bank pays £2. If heads appears for the first
time on the third toss, £4; on the fourth toss, £8; on the Jifth toss,
£16; and so on. What amount should the player pay the bank for the
privilege of playing one game in order that the game be fair — that is
10 say, in order that neither the player nor the bank has an advan-
tage regardless of how long the game goes on?

First let us be sure we know what is meant by a fair game?,
Consider the following simple example, A player undertakes to
throw a four with one throw of a single die. The bank agrees to pay
him £1 if he succeeds. What amount should the player pay if the
game is to be a fair one?

In a single throw the probability of a fouris obviously . Now we
cannot infer from this that the player will throw 1 four in exactly
6 throws. We can infer, however, that in a large number of throws
—say 6000 - a four will occur abour 1000 times, and that as we in-
crease the number of throws, the ratio of the number of successes
to the number of throws will approach more and more nearly to .
(This is an application of a theorem enunciated by Jacob Bernoulli,
brother of Nicolaus.) The player’s ‘expectation’, as it is called, is
therefore 4 of £1 per game, and this amount is what he should pay
the bank if neither he nor the bank is to have an advantage.

One more example. Suppose the bank agrees to pay the player
£1 if he gets a four on the first throw. If he fails, it will pay him £1
if he gets a four on the second throw. What amount should the
player pay the bank in this instance? As before, the player’s expec-
tation on the first throw is 4 of £1. His expectation on the second
throw, however, is not £ of £1. He will collect on this throw only -
if he fails to collect on the first throw. Now the probability that he
does not get a four on the first throw is &, and the probability that
he does get a four on the second throw is 3. Hence the probability
that he fails on the first and succeeds on the second is @@, orE,
That is to say, his expectation on this throw is +5 of £1. Finally,
the player’s chance of collecting on the first throw or the second
throw is 3+, or 3. His expectation in this game is therefore 42
of £1 - the amount he should pay if the game is to be fair. Note
that here, as in any game of this kind, the total expectation is the
sum of the expectations at each stage of the game.

And now back to the original problem. Consider the first toss of
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the coin. The probability of heads is . The amount involved is £1.
Therefore the expectation on this toss is 4 of £1, or 10s. Consider
the second toss. The player will collect on this toss only if he
throws tails on the first toss and heads on the second. The prob-
ability that this will happen is (3) (3), or 4. The amount involved is
£2. Therefore the expectation on this toss is } of £2, or 10s. Con-
sider the third toss. The player will collect on this toss only if he
throws tails on the first two tosses and heads on the third. The
probability that this will happen is (3) (3) (3), or £. The amount in-
volved is £4. Therefore the expectation on this toss is § of £4, or 10s.

To show that the expectation on every toss is 10s, consider the
uth toss. The player will collect on this toss only if he throws tails
on the first # — 1 tosses and heads on the nth. The probability that
this event will happen is 3) () &) ... (}) to # factors, or 3*. Now
the number of pounds involved in the first toss is 1, or 29; that in
the second toss, 2, or 21; that in the third toss, 4, or 22; that in the
fourth toss 8, or 23; and so on. Note that the number of pounds is
always a power of 2, and that the power is always one less than
the number of the toss. Hence the number of pounds involved in
the nth toss is 2»~1, Finally, then, the expectation on the nth toss is
(") (2771), or 2#=1/2, or 10s.

Since the total expectation is always the sum of the expectations
at each stage of the game, the total expectation here is

1,171,111 1
£ 2+2+2+2+§+§+"'

Now recall that play is to continue until heads turns up. Theor-
etically there is no limit to the number of tails which may appear
before the first head appears, and this means that the above series
is to be summed to infinity. But the sum of an infinite number of
terms of this series is obviously infinite. It follows that the player
must pay the bank an infinite amount of money for the privilege of
Dlaying one game!

This result is absurd. No one would ever think of paying any
great amount for such an opportunity. Yet the mathematics is
correct. What is wrong, then? This question has been bothering
mathematicians for some two hundred years, and as yet no one has
found an answer acceptable to all concerned. A number of solu«
tions have been suggested.’ Of these, the following one probably
appeals most to common sense.
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There is nothing wrong with the result we arrived at provided
there exists a bank which has infinite wealth and which is conse-
quently in a position to pay the player ho matter how late in the
game the first head turns up. But such a bank obviously does not
exist. Suppose, then, that we investigate the expectation in the case
of a bank whose wealth is limited to £1,000,000.

As before, the probability that a head first appears on the nth
toss is 37, If a head does appear on this toss, the bank pays £27~1
provided this amount is less than £1,000,000. Otherwise it pays
£1,000,000. That is to say, if p, denotes the probability that a head
first appears on the nth toss, and if a, is the amount in pounds
paid by the bank for a win on that toss, then the expectation on
the nth toss is p,, .a,,, where

1 .
Pa=3s provided 271 is less than 1,000,000,
a. ﬂz""l

B2 provided 27~1 is greater than 1,000,000,
ay, =1,000,000

Now 219 is less than 1,000,000, while 220 is greater than 1,000,000,
It follows that the first set of conditions applies when » is less than
or equal to 20, and the second set when » is greater than 20,
Therefore the total expectation in pounds is given by the expres-
sion

1 +5@+109+- 2@ +... to twenty terms
~+557(1,000,000) +51(1,000,000) +.. to infinity.

Since each of the first twenty terms of this series has the value %,
the sum of the first part of the series is 10. The second part is a
geometric series, the sum of which can be obtained by an elemen-
tary algebraic formula. The value of this sum to four decimal
places is -9536. The total expectation in the case of a £1,000,000
bank is thus seen to be £10-95, a not unreasonable amount to pay
for the privilege of playing.

While we are on the subject of gambling, here are two hints on
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how to win at roulette. They are included for the benefit of those
who wish to take them for what they are worth. The author
assumes no responsibility in connexion with either of them!

Paradox 1. If you are willing to take a chance on losing £10 -
but no more than £10 ~ proceed as follows. Put £10 on red (or
black) the first day. If you win, put £20 on red the second day. If
you win, put £30 on red the third day. Continue as long as you
win. If you lose, stop at once and never play again. Then if you
ever lose, you lose no more than £10. But if you continue to win,
you will win 104-20 30 +... -+ 10z pounds by stopping after the
1st, 2nd, 3rd, ..., nth day.

" Paradox 2. If you wish always to 'be ahead of the bank,‘stick to

one wheel and play consecutive games as follows:* Bet £1 onred.

If you win, all well and good. If you lose, put £2 on red. If you
then win, you are £1 ahead. If you lose, put £4 on red. If you then
win, you are again £1 ahead. If you lose, put £8 on red. And so on.
Keep betting until you win. Theoretically, of course, it is possible
for the bank to wipe you out financially. Actually, however, runs
of more than 10 or 12 successive blacks or reds are extremely rare,
and your stake at the twelfth play would be only £2048. When you
do win you.will, as before, be £1 ahead of the bank. You can then
begin all over again, Simple, isn’t it?

*

As a final example of the pitfalls of probability we shall consider
an amusing paradox proposed by Lewis Carroll.*®

A bag contains two counters as to which nothing is known save
that each is either black or white, Ascertain their colours without
taking them out of the bag.

Carroll insisted that the answer is ‘one white, one black’ by the
following argument: We know that if a bag contains three counters,
two being black and one white, the probability of drawing a black
one is %, and no other state of things will give this probability.

Now with two counters there are four equally likely cases: both
counters can be black, or the first black and the second white, or
the first white and the second black, or both white. For brevity we
shall denote these cases by BB, BW, WB, and WW respectively.
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Since they are equally likely, and since one of them must represent
the true situation, the probability of each is }.

Add a black counter. Then, as before, the probabilities of BBB,
BWB, WBB, and WWB are each . Now note that in the case of
BBB, the probability of drawing a black counter is 1; in that of
BWB, %; in that of WBB, %; and in that of WWWB, %. Therefore the
probability of drawing a black counter from the bag is

1,21.21,11 3 2 2.1 8 2
lL3t3at3at3 otttz s

But, as we have said before, the probability of drawing a black
counter is % only if the bag contains two black counters and one
white counter. Hence, before the black counter was added, the bag
must have contained one white, one black!

It does not take long to see that the adding of the black counter
is little more than rigmarole designed to confuse the reader. For
suppose we return to the original situation involving only two
counters. The possible cases are

BB, BW, WB, WW;
the probabilities of these cases are

1111,

A A
and the probabilities of drawing a black counter in the respective
cases are

111

’ 2’ 2

By the same argument that was used before, the probability of
drawing a black counter is, in the combined cases,

1,11.11 1 21,1 4 1
l.z+§.a+§.a+0.a=§+§+§+o='g,01‘2'.

0.

But if the probability of drawing a black counter is %, and if there
are two counters in the bag, one must be white and the other black,

The paradoxical conclusion does not, therefore, depend upon
the adding of a third counter. The fallacy lies in the third step -
that in which the probabilities of drawing a black counter in the
individual cases are combined to give a single probability, Perhaps
the easiest way to convince ourselves of this factisto carry through
the argument for a bag containing three counters,
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If there are three counters, each of which can be either black or
white, the possible cases are v

BBB, BBW, BWB, WBB, BWW, WBW, WWB, WWW.

Since there are eight equally likely cases, one of which must re-
present the true state of things, the probability of each is

11111111

The probabilities of drawing a black counter in these cases are,
respectively,

1’ 3‘! §! 3’ 3’ §, ’3‘, o..
If these probabilities are combined as before, the probability of
drawing a black counter is

3.,2,2,2,1,1
Y R K7 BT W7 WY
12 1

=§Z’ or 2
. Butif the probability of drawing a black counter is 4, the number
of black counters must be equal to the number of white counters —
a situation which simply cannot exist in the case of three counters,
The same argument applied to any number of counters will always
give the same result — 3. Consequently the argument is not a valid
one.

1
+27f-+0

*

At least twice in this chapter remarks were made concerning the
applicability of the theory of probability to other fields. A discuss-
ion of the role played by probability in the theoretical sciences —
notably physics and chemistry ~ would lead us too far astray into
technical matters. But a few words about its relation to the applied
sciences may help to give us some idea of its importance in every-
day activities. .

In economics, for example, statistical methods ~ and statistics
and probability are inseparable - have been found to be indispens-
able in the study of insurance, benefit and pension plans, market
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surveys, and demand and price fluctuations. Industry uses statistics
extensively in such matters as the inspection of items manufactured
in mass production, and the subsequent improvement of manu-
facturing processes. And even those engaged in modern warfare
are finding probability and statistics helpful in their attempts to
increase the accuracy and effectiveness of their gunnery and bomb-
ing.

Early in the eighteen hundreds Laplace — who was not only a
mathematician, but also one of France’s greatest astronomers and
physicists - hailed the theory of probability as ‘ the most important
object of human knowledge’. This estimate may have seemed reck<
less at the time it was made, but in these days it is beginning to

* seem somewhat more sound.
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CHAPTER NINE

Paradoxes in Logic

‘MATHEMATICS and logic, historically speaking, have been en-
tirely distinctstudies. Mathematicshas been connected with science,
logic with Greek. But both have developed in modern times: logic
has become more mathematical and mathematics has become more
logical. The consequence is that it has now become wholly impos-
sible to draw a line between the two; in fact, the two are one. ...
The proof of their identity is, of course, a matter of detail: starting
with premises which would be universally admitted to belong to
logic, and arriving by deduction at results which as obviously
belong to mathematics, we find that there is no point at which a
sharp line can be drawn, with logic to the left and mathematics to
the right.’

So wrote Bertrand Russell in 1919.2 In spite of the fact that many
mathematicians still refuse to admit the identity of mathematics
and logic, there is, as Russell indicates, ample evidence of the fact
that a close relationship does exist between the two subjects. Any-
one fortunate enough to have studied plane geometry under the
right kind of teacher is at least mildly aware of this relationship,
although such matters are sadly neglected in most elementary
courses. Certainly the connexion between mathematics and logic
is close enough for contradictions in logic to have a disquicting
effect on mathematics.

The troublesome issues raised by the paradoxes of logic can for
the most part be traced to one basic cause. Furthermore the para-
doxes are, if not amusing, at least thought-provoking in them-
selves. We shall consequently examine them first with little regard
for their mathematical significance, and shall then return to scrut-
inize them more carefully.

The oldest of the logical paradoxes was discussed, in simplified
form, at the very beginning of this book. It dates back to the sixth
century B.C. when Epimenides, the celebrated poet and prophet of
Crete, is supposed tohave made his famous remark, ¢ All Cretansare
liars.”If we are to find anything paradoxical in this remark, we must
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rewrite it in the form, ¢ All statements made by Cretans are false.?

Now offhand this does not appear to be a particularly dangerous
verdict. It resembles the idle exaggerations.in which all of us ine
dulge - such things as ¢ All the stars are out tonight,’ ¢ All the books
that have appeared this season are worthless,’ and *All the shop-
keepers in this town are thieves.” But ‘All statements made by
Cretans are false’ is much more than an idle exaggeration. Like
the fabulous hoop snake, it suddenly turns and starts swallowing
itself. The trouble begins when we consider the fact that Epimens
ides, who makes this statement, is himself a Cretan, In that case,
all statements made by Epimenides are false. In partxcular, his
statement ‘ All statements made by Cretans are false’ is false, so
that all statements made by Cretans are not false.

We are now probably so bogged down in words that we don't
know where we are. That, unfortunately, is one of the difficulties
we encounter in all these paradoxes. Their significance is seldom
apparent at first reading — they must be read and re-read until they
are clear. It will perhaps be of some help here to put the argumeng
in a step-by-step form. :

(1) All statements made by Cretans are false,

(2) Statement (1) was made by a Cretan,

(3) Therefore statement (1) is false,

(4) Therefore all statements made by Cretans are not false.

Now statements (1) and (4) obviously cannot both be true, yet
statement (4) follows logically from statement (1). Consequently
statement (1) is self-contradictory.

*®

There is hardly a person living who has not made use, .at some
time or other, of the well-worn adage, ¢ All rules have exceptions.’
‘There are probably few people, however, who are aware of the fact
that it is self-contradictory.

The statement is, to all intents and purposes, a rule to the effect
that all rules whatever have their exceptions. Now if all rules have
exceptions, then this particular rule ~ ¢ All rules have exceptions® -
must have an exception. And what would an exception to this rule
be? Why, the only thing it could be is a rule without an exception,
And if a rule without an exception exists, then all rules do nothave
exceptions,
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But perhaps we had better resort once more to the step-by-step
argument.

(1) All rules have exceptions.

(2) Statement (1) is a rule.

(3) Therefore statement (1) has exceptions.

(4) Therefore all rules do not have exceptions,

*

Another paradox which has its foundation - real or legendary -
in antiquity concerns the sophist Protagoras, who lived and taught
in the fifth century B.c. It is said that Protagoras made an arrange-
ment with one of his pupils whereby the pupil was to pay for his
instruction after he had won his first case. The young man com-
pleted his course, hung up the traditional shingle, and waited for
clients. None appeared. Protagoras grew impatient and decided to
sue his former pupil for the amount owed him,

‘For,’” argued Protagoras, ‘either I win this suit, or you win it.
X I win, you pay me according to the judgement of the court. If
you win, you pay me according to our agreement. In either case I
am bound to be paid.’

‘Not so,’ replied the young man. ‘If I win, then by the judge-
ment of the court I need not pay you. If you win, then by our agree-
ment I need not pay you. In either case I am bound not to have to
pay you.’

Whose argument was right ? Who knows ?

*

A stranger in town once asked the barber if he had much competi-
tion. ‘None at all,’ replied the barber. “Of all the men in the village,
I naturally don’t shave any of those who shave themselves, but I
do shave all those who don’t shave themselves.’

This remark appears innocent enough until we stop to think of
the plight of the barber. Does he shave himself or doesn’t he ? Let’s
suppose he does. Then he is to be classed with those who shave
themselves. But the barber doesn’t shave those who shave them-
selves. Therefore he does not shave himself. All right, then, let’s
suppose he does not shave himself. Then he is to be classed with
those who don’t shave themselves. But the barber shaves all those
who don’t shave themselves. There he does shave himself,

Here is an intolerable situation. For if the poor barber shaves
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himself, then he doesn’t, and if he doesn’t, he does. Even growing
a beard won't help him!

If we care to do so we can express every integer in simple English,
without the use of numerical symbols. For example, 7 can be ex-
pressed as ‘seven’,‘or as ‘the seventh integer’, or as the third odd
prime’. Again 63 can be expressed as ‘sixty-three’, or as ‘seven
times nine’. And 7396 can be expressed as ‘seven thousand three
hundred and ninety-six’, or as ‘seventy-three hundred and ninety-
six’, or as “eighty-six squared®.

It is at once evident that to express each integer requires the use
of a certain number of syllables. In general, the larger the number,
the more syllables required. This generalization is not always true,
however. For éxample, the thirty-nine digit number on page 36
can be expressed in five syllables as “the largest known prime’. The
important thing to note is that every integer requires a certain
minimum number of syllables.

Now let us divide all integers into two groups, the first toinclude
all those which require a minimum of eighteen syllables or less, the
second to include all those which require a minimum of nineteen
syllables or more. Consider the second group. Of all the members
of this group, there certainly is one which is the smallest. Just what
integer constitutes this smallest member is beside the point. It is
sufficient to note that ‘the least integer not namable in fewer than
nineteen syllables’ is some specific number.

But what of the phrase in quotation marks? It is certainly one
way of expressing, in English, the smallest member of the second
group. And this phrase requires only eighteen syllables — count
them. In other words, the least integer not namable in fewer than
nineteen syllables can be named in eighteen syllables!

*

Consider next all the adjectives in the English language. Each
adjective has a certain meaning. In some adjectives the meaning
applies to the adjective itself; in others it does not. For example,
‘short”’ is a short word, but ‘long’ is not a long word. ‘English’ is
an English word, but ‘French’ is not a French word. ‘Single’ isa
single word, but ‘hyphenated’ is not a hyphenated word. ¢Poly-
sylkabic’ is a polysyllabic word, but ‘monosyliabic’ is not a mono-
syltabic word. And so on.
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Since the meaning of an adjective must either apply to itself or
not apply to .itself, we can divide all adjectives into two groups
accordingly. Thus, if the meaning of a given adjective applies to
itself, we shall classify it as ‘autological’. And if its meaning does
not apply to itself, we shall classify it as ‘heterological’.

Now let us consider the word ‘heterological’. This word is
certainlyanadjective, and so it must be either autological or hetero-
logical. But if “heterological’ is heterological, then this very state=
ment -~ ‘heterological’ is heterological — asserts that ‘ heterological®
applies to itself. And if it does apply to itself, then it must be auto-
logical, according to our definition of the word ‘autological’,
On the other hand, if ‘heterological® is autological, then this
very statement — ‘heterological’ is autological — asserts that
‘heterological’, being autological and not heterological, does
not apply to itself. And if it does not apply to itself, then it
must be heterological, according to our definition of the word:
‘heterological’.

The situation that confronts us is appalling, A given adjective
must obviously be either autological or heterological - it cannot be
both autological and heterological. Yet we have just shown that if
the adjective ‘heterological’ is heterological, it is not heterological,
but autological; and if it is autological, it is no¢ autological, but
heterological! .

Butenough, for the moment, of examples. It is time that we stopped
to think about the nature of the difficulties involved in them, and
to see in what way they affect mathematics.

Note first that there is one characteristic common to all these
paradoxes. They are concerned with statements about ‘all’ the
members of certain classes of things, and either the statements or the
things to which the statements refer are themselves members of those
classes. This common characteristic is not as obvious in some in~
stances as in others. For. this reason it will be well to review our
examples briefly with an eye to recognizing the characteristic in
each of them.

¢ All statements made by Cretans are false.’ Since this is a state-
ment made by a Cretan, it is itself a member of the class of all state~
ments made by Cretans. Here the characteristic is cbvious, as itis
in the case of ‘ All rules have exceptions.’

The problem of Protagoras and his pupil is concerned with the
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class of all cases to be argued in court by the pupil. Included in this
class is the case built round the class itself,

The quandary of the village barber is concerned with the class
of all men in the village who either shave themselves or do not
shave themselves. Since the barber either shaves himself or does
not shave himself, he is evidently a member of this class.

The ‘least integer® problem involves the class of all English ex-
pressions denoting integers. The phrase ‘ the least integer not nam-
able in fewer than nineteen syllables’ is an English expression de-
noting an integer, and so is a member of the class in question,

Finally, in the last paradox discussed, the class of all adjectives,
autological or heterological, obviously includes the adjective ‘het-
erological’.

The vicious circle which arises when a statement is made about
¢all” the members of a certain class, and when the statement or the
thing to which the statement refers is itself a member of that class,
is difficult to avoid. Bertrand Russell, as early as 1906, tried to get
round the difficulty by means of what he called the ‘theory of log-
ical types’.2 He held that logical entities ~ statements, rules, things,
and the like — are not all of one type, but fall into a hierarchy of
types which are radically different, however similar they may ap-
pear to be. Moreover, whatever involves ‘all” of a certain class of
things is not of the same type as the things themselves, Take the
case of  All statements made by Cretans are false.” The ‘statements
referred to are statements about things. The statement itself is not
a statement about things, but a statement about statements about

-things. It is therefore a statement of a different type, and so cannot

be made to refer to itself. Hence it can lead to no contradiction,
Similarly, in the rule, ‘All rules have exceptions,’ the ‘rules’ re-
ferred to are rules about things, whereas the rule itselfis not a rule
about things, but a rule about rules about things.

The theory of types, as described above, appears to beasafeand
fairly simple means of escape from the troublesome vicious circles.
Actually, however, the difficulties involved in the paradoxes are
much more subtle than we have made them seem.® But rather than
get any deeper into a discussion of the efficacy of the theory of
types, let us stop to consider the following question — one which
many of us have been waiting patiently to have answered. What
have the logical paradoxes to do with mathematics? We shall try to
answer this question by means of three more paradoxes. They are
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different from those we have discussed in that they bear directlyon
mathematics, yet they are the same in that the contradictions in-
volved arise from what is essentially the same basic source.

*

The first of our three paradoxes has to do with transfinitenumbers,
a subject we discussed in the last section of Chapter 7. Recall that
we examined two transfinite numbers in detail: 4,, the number of
naturalnumbers, and C, thenumber of realnumbers. Recall further
our remarking that Cantor proved conclusively that just as theré
is no greatest natural number, so there is no greatest transfinite
number. His proof hinges, essentially, on one of the properties of
transfinite numbers noted on page 158. That is to say, the number
2, raised to any transfinite power, always generates a new — and
larger — transfinite number. Thus 241 = C, 2€ =a still larger trans-
finite, and so on.

But now consider the class of all classes. And we mean ALL
classes - all books, all chairs, all plants, all animals, all numbers
(finite or transfinite, real or imaginary, rational or irrational), all
things which ever existed in this or any other universe, all ideas
you or anyone ¢lse, living or dead, may ever have had - everything

~ conceivable goes into this class. Now surely no class can ever have
more members than this, the class of all classes. But if such is the
case, then the transfinite number-of this class is unquestionably
the greatest transfinite number. Yet, as we have said, Cantor proved
that there is no such thing as a greatest transfinite number!

This paradox was brought to light by the Italian mathematician,
Burali-Forti, in 1897. As originally conceived and stated,* it in-
volves a number of technical terms and ideas which for lack of
space in Chapter 7 we neglected to develop. The non-technical
description given above is consequently by no means as accurate
as it should be. The whole thing may seem to us fo be a case of
rather fine hair-splitting, but its importance to mathematics is.in-
dicated by the fact that when it first appeared it nearly brought
about the collapse of the entire Cantorian theory.,

*
The difficulties involved in our second paradox are similar to those

we encountered in the autological-heterological controversy.
Note first that classes are either members of themselves or not.
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For example, the class of all entities is itself an entity, while thie
class of all men is not a man. The class of all ideas is itself an idea,
while the class of all stars is not a star. The class of all classes - the
class we worked with in the last paradox —.is itself a class, while
the class of all books is not a book. And so on,

Since any given class must be-either a member of itself or nota
member of itself, we can divide all classes into two groups accord-
ingly. We shall denote by S the class of all self-membered classes -
that is, classes which are members of themselves. And we shall
denote by N the class of all non-self-membered classes — that is,
classes which are not members of themselves.

Now let us fix our attention on N, Since N is a class, it must be
either self-membered or not. That is to say, N-must be a member
either of S, the class of all self-membeted classes, or:a member of
N, the class of non-self-membered classes. If N is a member of N,
then this very statement - NN is @ member of N — asserts that Nisa
member of itself. And if Nis a member of itself, it must be a mem=
ber of S, the class of all self-membered classes, On the other hand,
if N is a member of S, then this very statement — N is a member of
&'~ asserts that N, being a member of ., is not a member of itself,
or N. And if N is not a member of itself, it must be a member of N,
the class of all non-self-membered classes.

Now obviously a given class must be either self-membered or '

non-self-membered - it cannot be both. In other words, a given
class must be a member of either S or N - it cannot be 2 member
of both S and N, Yet we have just shown that if the class N'is a
member of N, it is rot a member of N, but of S; and if Nisa
member of S, it is #ot a member of S, but of N1
The same argument is usually presented by mathematicians and
logicians in a much more compact form, This form may appeal to
those of us who were confused by the wordiness of the argument
as presented above. Let’s try it,
Denote any class by X, and, as before, the class of all non-sclfe
membered classes by N. Then the following statemerit is true, -
X is a member of N if and only if X is not @ member of X. Thatis
“to say, X'is a member of the class of all non-self-membered classes
if and only if X is not a member of itself, Since X represents any
class, and since N is a class, we may substitute N for X, The states
ment then reads
N is a member of N if and only if N is not @ member of N,
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Here again is what may seem to us to bea hair-splitting proposi=
tion as far as mathematics is concerned. Itssignificance, however,
is made apparent by the following historical note. Gottlob Frege, a
German mathematician, had spent years in an attempt to put
mathematics on a sound logical basis. His chief work was a two-
volume treatise on the foundations of arithmetic, a treatise in
which he used freely the notion of a class of all classes that have a .
given property. Some indication of the time he spent on this wotk
is to be had from the fact that the first volume was published in
1893, the second in 1903. As the second volume was about to
appear, Bertrand Russell sent Frege the paradox we have just dis-
cussed. Frege acknowledged the communication as follows at the
end of his second volume,

‘A scientist can hardly meet with anything more undesirable
than to have the foundation give way just as the work is finished.
In this position I was put by a letter from Mr Bertrand Russell as
the work was nearly through the press.’

Incidentally, Frege’s use of the word ‘undesirable’ makes his
remark one of the great understatements of all time!

*

The third of the three paradoxes we set out to discuss is the so-
called Richard paradox,® named after its originator, J. Richard, a
French mathematician.

Before getting into the main argument, let us consider a simple
analogy. Suppose that our English vocabulary consisted of only
three words — say “see’, ‘the’, and cat’. Now it stands to reason
‘that with such limitations we could never discuss any idea which
requires more than three words. We could not, for example, develop”
any of the ideas we now have under consideration. This conclusion
may appear to be childishly simple, but it w111 clarify the argument
to follow.

Any system of symbolic logic, or mathematics, consists of a col-
lection of formulas. Here we are using the word ‘formula’ not in
the restricted mathematical sense, but in the broadest sense. That
is to say, a formula is any symbol (including letters of the alphabet,
numbers, punctuation marks, and the like), or any word, or defin-
ition, or statement, or theorem — anything by which we express
ideas. Now it is not difficult to show; using the notion of one-to-
one correspondences which we developed in connexion with trans<
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finite numbers, that itis possible to set up a one-to-one correspond-
ence between the class of all formulas of any given system and the
class of all natural numbers. In other words, the class of all form=
ulas has the transfinite number Aj. )

The Richard paradox then consists in what amounts to the fol-
lowing problem: How can any system of symbolic logic, in which
the class of all formulas has the transfinite number 4y, be adequate
for the discussion and development of any branch of matherhatics
that deals with classes whose transfinite numbers are greater than
A;? In particular, how can we even talk about the class of real
numbers, whose transfinite number, C, has been proved to be

greater than 4;? .

It must be emphasized again that the paradoxes of logic are not
foolish problems with which the philosophically-minded while
away their time. It is true that they may have existed as such for
hundreds of years, But when, at the beginning of the present cen-
tury, Burali-Forti, Russell, and Richard dressed them up and par-
aded them in miathematical costumes, they started a revolution
which is still very much in progress. It is almost impossible to dis-
cuss - briefly and in non-technical terms — what is going on in this
revolution. But enough can be said to give us at least some idea of
present trends.®

Those who are engaged in laying the new foundations of mathe-
matics can be roughly divided into the following three groups:
(1) the logistic group, led by the Englishman, Bertrand Russell;
(2) the axiomatic group, led by the German, David Hilbert; (3) the
intuitionist group, led by the Dutchman, L.E.J. Brouwer.

The programme of the logistic group is to reduce mathematics
to symbolic logic. This fact might have been inferred from the
passage quoted at the beginning of the present chapter. Aswehave
already seen, Russell proposed the theory of types as a means of
getting round the logical contradictions. The shortcomings of this
particular technique have been recognized, and repeated attempts
have been made to modify it accordingly, It is still not entirely
satisfactory.

Theprogramme of the axiomatic group isto base all mathematms
on a fundamental system of axioms, or assumptions. Such systems
have been found. for important parts of mathematics, and it
remains only to prove that the systems are consistent — that no
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contradictions can arise in results deduced from them. In the case
of many of these systems it has been shown that any contradiction
arising from the system would imply a contradiction in arithmetic.
Thus the chief problem of the axiomatic group is that of proving
that the axioms of arithmetic are consistent. No satisfactory proof
of this has yet been found.

Finally, the intuitionist group maintains that no mathematical
concept is admissible unless it can be constructed. That is to say,
not only must the concept exist in name, but an actual construc-
tion must be exhibited for the thing which the concept represents.
Now if the construction is to be an actual one, then it must con-
sist of a finite number of steps — or, as the Richard paradox indi-
cates, of certainly no more than 4, steps. And in that case we have
no right to talk about such a thing as the class of all real numbers,
whose transfinite number is greater than A,. This attitude is hardly
satisfactory, for it means that many of the most powerful and use-
ful methods of mathematics must be thrown overboard.

Which of these three groups has the ‘best’ policy ? The answer is
a matter of opinion. As in politics, each individual interested in
the controversial issues must ally himself with that party whose
platform seems to him the most reasonable. However dissimilar
their paths may be, all three groups are working toward the same
end - to establish all mathematics on an unassailably sound basis.
No one can predict whether or not this ideal will ever be attained.
But already the controversies of the last few decades have brought
forth entirely new fields of research, as well as new and effective
methods in old fields. So as far as mathematics as a whole is con-
cerned, the setbacks occasioned by the paradoxes of logic have
been more than balanced by the advances resulting from their
subsequent investigation.
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CHAPTER TEN

Paradoxes in Higher Mathematics

THE mathematics involved in the ptevious chapters has for the
most part been of the type ordinarily covered in secondary-school
courses. Whenever such was not the case ~ as, for example, in the
last three chapters ~ an attempt was made to develop as much of
the mathematical background as was necessary for an understand-
ing of the problem at hand.

This last chapter is designéd for those whose work in mathe-
matics has extended beyond the elementary level, It consists of
some twenty paradoxes concerned chiefly with the subjects of trig~
onometry, analytical geometry, and calculus., A knowledge of these
subjects will be assumed, and no attempt will be made to develop
any ofthe necessary.concepts or techniques. Furthermore, thesolu-
tions of the various problems will not be discussed in the main
body of the text, The reader will thus be givenachance to diagnose
the difficulties himself ~ a procedure he should follow if he wishes
to derive the maximum amount of pleasure and profit from the
chapter. Since, however, such a procedure might conceivably lead
to insomnia, nervousness, and general irritability, a complete dise
cussion of each problem is offered as usual in the Appendix.

GEOMETRY AND TRIGONOMETRY

Paradox 1. To prove that two non-parallel lines will never meetd

Let aand b of Figure 102 be two non-parallel lines, Draw a third
line 4B so that it makes equal angles with @ and b. It is evident at
once that since angles 1 and 2 are obtuse, @ and 4 can have no
point in common to the left of the transversal AB. We need theree
fore consider only what happens to the right of AB.

Mark off AC =BD =AB(2, Points C and D cannot coincide as
in Figure 103(a) - for if they did, the sum of two sides of the re=
sulting triangle would be equal to the third side. Bven less can the
segments AC and BD have any other point in common - say the
point § of Figure 103(b). For then the sum of two sides of the trie
angle 4BS would be less than the third side,

197



‘RIDDLES IN MATHEMATICS

¥16.102

Now draw CD and mark off CE = DF=CD/2,Reasoningexactly
as before, we can show that the segments CE and DFhave no point
in common. We can therefore draw EF, mark off EG =FH =EF)2,
and show that the segments EG and FH have no point incommon,
And so on. Since this same argument can be repeated indefinitely,
we must conclude that the lines @ and b will never meet.

\A/\@ \A/4\

B %2 B
(=) (®)
Fi1G. 103

Paradox. 2. To prove that every triangle is isosceles.

In Figure 104 let ABC be any triangle, and let a, b, and ¢ be the
sides opposite the angles A, B, and C respectively. Extend BC a
distance & to P, and AC a distance a to Q, Draw 4P and BQ,
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Q
A
Cct

Fig. 104

In triangle APC, AC=CP, so £.CAP =/ CPA. Furthetmore
LC oftriangle ABC is an exterior angle of triangle APC. It follows
that /. CAP = /.CPA4 =1/ C. Similarly, /. COB=/CBQ=%/C.
I‘I_C;Vh’ apply the law of sines to triangles 4BP and 4BQ. In the first
of these,

BP_atb =sin (A -ig), o
AB ¢ sin %‘
and in the second,
AQ a+tb sin (B +§) V)
4B ¢ sing
Therefore
sin (A+§) sin (B+—2q)
. C .. Cc ®
S '-2‘ sin -2‘
sin (A +§) ~sin (B+§), @
whence
4+5-8+%, ®)
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. 4=B. ©)
It follows that @ =5, and that the triangle is isosceles by definition,

and

Paradox 3. To prove that 1 =22
We have, successively, for all values of x,

cos2 x =1 —sin? x, )

(cos2 x)} =(1 —sin2 x)3, ¥))
cos3 x =(1 ~sin2 x)3, [€))

c0s? x+3 =(1 —sin2 x)¥+3, @
(cos3 x-+3)2 =[(1 —sinZ x)i+312, )

Let x have the value /2. Then cos x =0, sin x =1, and (5) re-
duces to
9=9,
a true result.
But now let x have the value = Then cos x = — 1, sin x =0, and
(5) reduces to
22 =42,

That is to say, 2 =4, or 1 =2,

Paradox 4. To prove that sin x =0 for all values of x?

As is well known, the power-series expression for sin x contains
only odd powers of x. In other words, sin x can be written in the
form :
sin x =agx +a2x3 +a3x5 +asxT+... o
The coefficients ay, @z, a3, a4, «.. can be determined in the following
way. We know that

sin2 x =1-—cos2 x,
whence .
sin x =(1 —cos2 x)s, ©
Since cos2? x £ 1 for all values of x, the right-hand side of (2) can be
expanded by the binomial theorem. This gives

sinx=1-%cos2x—%cost x—cosbx ... 3

But now think of the power-series expression for cos x. It con-
tains only even powers of x. Consequently the right-hand side of
(3) contains only even powers of x. In other words, the coefficients
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of the odd powers of x in (3) are all zero. It follows that all the co-
efficients ay, a2, a3, a4, ... of (1) must vanish, That is to say, sin
x =0 for all values of x.

Paradox 5. In solid geometry the traditional approach to the
measurement of a right circular cylinder is through regular prisms.
The lateral surface of such a cylinder, for example, is defined as
the limit of the lateral surface of a.regular inscribed prism as the
number of lateral faces is indefinitely increased. Now it might be
supposed that inscribed polyhedra other than regular prisms could
be used equally well for the same purpose, provided, of course,
that the number of faces be indefinitely increased and that the area
of each face be made indefinitely small. Let us see whether or not
this supposition is true in the following instance.

Consider a right circular cylinder whose radius is » and whose
altitude is 4. By means of planes parallel to the bases, divide the
cylinder into 2n equal slices, each of altitude A{2n. One of these
slices is shown in Figure 105, Divide the circumference of the lower
base of this slice into 2m equal parts by the points 4, B, C, D, E,

Fia. 105

«. Divide the circumference of the upper base into 2m equal parts
by the points 4°, B’, C’, D', E', ..., subject to the condition that,
A’ lie on the same generator of the cylinder as 4, B’ on the same
generator as B, C’ on the same generator as C, and so on. Finally,
construct the polyhedron whose faces are the isosceles triangles
AB’C, CB’D’, D’CE, ... Do the same for each of the 2n slices,
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Now denote the area of each triangular face by s, and the sum
of the areas of all the triangular faces of the entire polyhedron by
S. Since to each slice there corresponds 2m triangles, and since
there are 2 slices, it follows that

S =4mns. ()

To express S in terms of m, n, r, and k, proceed as follows. Let
P be the centre of the lower base, and let Q be the point of inter-
section of PB and AC. Then

s=A0.B'Q. 7))
If we denote the angle APQ by «,
AQ =rsina, @)

and
B’'Q =V (BB)?2+(BQ)?

= J (2};—1)2 +r2(1 —cos x)2

B’ . e
= \/ leﬁi +4r2 sin %: @

Substituting (2), (3), and (4) in (1),

hi -
=4, i —4r2 4=
S mnr S & ln2+ 4 SIN 2

=2mr sin op | i2+16r2n2 sin# % ®)

Finally, noting that 2me =2w, or that m =x/«, (5) can be written

in the form
S =27nr s_ln;?gA | B2 +16r2n2 sint g. ©

We are now in a position to consider the limit of S'as m and n
tend to infinity.

(a) Let n =km =kr/«, where k is any fixed constant. Then cer-
tainly 7 and = tend to infinity as « tends to zero. Moreover, the
second quantity under the radical sign of equation (6) assumes a
form which can be easily handled. That is to say,
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sin¢ 2 3
16r2n2 sm4-—=r2k21=2a2 g]

6)

Now the ratio of sin x to x tends to unity as x tends to zero. Hence
the right-hand side of (7), because of the factor o2, tends to zero as
« tends to zero. Substituting (7) in (6) and passing to the limit, we

have
lim S =2nrh.

«->0

(b) But now suppose we let # =km?2 =kn2/s2, Then

s 4 -
16r2n2 sin & =12%2mt 2. ®

3 3
()
Substituting (8) in (6) and passing to the limit,
lim §' =2rrV R r2k2r
>0

(¢) Finally, if we let nn =km3 =kn3[e3, we have

m4 x

G

and the quantity on the right, because of the factor m2, tends to
infinity as « tends to zero. If, then, we substitute (9) in (6) and pass
to. the limit,

lim §' = co,

o«~>0

The radically different results obtained in cases (a), (b), and (c)
are surprising, for in all three cases m and z were made to tend to
infinity together. It is true that in () we took # as a multiple of »,
in (b) as a multiple of 72, and in () as a multiple of 3, but it
seems incredible that these slight differences can lead to such tre-
mendous differences in the results, There is, of course, no fallacy
in the argument here - nothing is violated except intuition, But the
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example shows emphatically that we cannot, without careful atten-
tion to details, define a curved surface as the limit of the surface
of an inscribed polyhedron with increasingly many faces.

ANALYTICAL GEOMETRY
Paradox 1. To prove that = =§°

(2) ®)
F16. 106

The following two theorems are well known in the theory of
conic sections,

1. The area of the semi-ellipse in diagram (a) of Figure 106 is
wab/2, where 2a and 2b are the major and minor axes, respectively,
of the ellipse.

II. The area of the parabolic segment in diagram (b) of Figure
106 - a segment cut off by a chord perpendicular to the axis of the
parabola - is % that of the circumscribed rectangle.

If now the major axis of the ellipse is allowed to increase with»
out limit, the ellipse degenerates to a parabola, and the semi-ellipse
becomes a parabolic segment. But theorems I and If above are
true regardless of the dimensions of the curves, Therefore

2t
4ab

=3
Hence

=4
POTT3

T
-2- or
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Paradox 2, To prove that a diameter cuts a circle in only one point.$
The equations

1-p

TR ®
2t

Y 1ip @

are the parametric equations of a unit circle whose centre is at the
origin. This statement is easily verified by noting thatequations (1)
and (2), if squared and added, reduce immediately to the equation
x24y2=],

Consider the intersection of the x-axis and the circle. That is to
say, substitute y =0in (2). Equation (2) then reduces to =0, which,
substituted in (1), gives x =1. Therefore the x-axis cuts the circle
only at the point (1, 0),

Now by a proper choice of units and axes, any given circle can
be made a unit circle, and any diameter of the given circle can be
made to coincide with the x-axis. Hence any diameter of any circle
cuts the circle in only one point,

Paradox 3. Consider the following problem.? A point P in three-
dimensional Euclidean space is to be made collinear with two given
points 4 and B. How many algebraic conditions must be imposed
on the co-ordinates of P?

(@) Let Q and R be two arbitrary points subject only to the con-
dition that 4, B, Q, and R be not coplanar. Then if P is to be col-
linear with 4 and B, it is necessary and sufficient that P be coplanar
with 4, B, and Q, and also with A, B, and R. Therefore two con-
ditions are imposed on the co-ordinates of P,

(b) Of the three distances AB, BP, and AP, it is necessary and
sufficient that BP+AP =AB or AP+AB=BP or AB +BP=A4P
- i.e. that

(—~AB+BP+AP)AB—~ BP+AP)(AB +BP-AP)=0. (1)

The left-hand side of this equation can be rationalized by multiply-
ing both sides by the non-vanishing factor —(4B+BP-+AP). If

the resulting four factors on the left are multiplied together, equa-
tion (1) assumes the form

(AB)*-+(BP)* +(AP)* - 2(BPYAPY?
~2(APY((AB)2 - 2(AB)XBP)2=0. (2)
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The left-hand side of this equation is an unfactorizable rational
expression in the co-ordinates of 2. Hence only one condition is
imposed.

Which of these two solutions is correct?

DIFFERENTIAL CALCULUS

Paradox 1. To prove that any two numbers are equal to each
other.®
Let us start with the relation

x=a—b. @
If we multiply both sides of (1)by x,

x2=ax—bx. @)
And if we square both sides of (1),

X2 =a2~2ab-+b2, 3)
From (2) and (3),
ax—bx =a2—2ab-+b2.

That is,

ax—a2-+ab =bx—ab-b2,
a(x—a-b) =b(x—a-b). @

If we divide both sides of (4) by the factor (x — a-+-b), we obtain
a=>b. But such an argument is obviously fallacious, for, since
X =a—b, we are dividing both sides by zero. Very well, then, let us
write

or

(x—a+b) ,(x—a-+t+b)
4G=a¥5) ~P=atb) ®

Now when x has the value a— b, equation (5) reduces to a(0/0)
=5(0/0). In order to evaluate the indeterminate quantity 0/0, we
resort to a device frequently used for this purpose. That is to say,
we make use of the fact that
i) F(x),
x-}ag(x) xh—gég (x)
If, then, we differentiate the numerators and denominators of the
fractions in (5), we obtain

0(—11—) =bG), ora=b.
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Paradox 2. To prove that all proper fractions have the same value $

Let m and » be any two integers such that 7 is less than m. Then
by ordinary long division,
%:::‘21 —x"+x”'~x“+m+x2’”—u. (1)

Now let x have the value 1. The left-hand side 6f (1) assumes the
indeterminate form 0/0. We can get round this difficulty by differ-

entiating nurmerator and denominator before passing to the limit,
We then have

e el .

x>11=X" oy —mx™=1"m
But the limit, as x approaches 1, of the right-hand side of MDis

1-1+1~141~1+.., Therefore n/m, being equal to an expres=

sion which is independent of m and #, must always have the same
value.

Paradox 3, Consider the triangle ABC of Figure 107. Suppose
that ABis 12 inches long, and that the altitude CD is 3 inches long.
Letus propose to find that point P on CD for which the sum of the
distances of P from the three vertices is a minimum 2

If we denote by S the sum of the distances of P from A, B,and
C, and by x the length of DP, then the problem is that of finding
the value of x that makes .S a minimum. Now,

S§=CP+AP+PB,
But CP =3 ~x, and AP =PB =4/x2136. Therefore
S§=3-x+2Vx2F36,
2x .
VX236
Making dS/dx zero gives x =24/3 =3-464, and for this value of
X, P lies outside the triangle on DC produced. Hence there is no

and s
a;c=—1+
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point on CD for which S is a minimum. Yet the problem appears
to be straightforward enough. What is wrong?

Paradox 4. To prove that every ellipse is a circle*

Denote by a and e, respectively, the semi-major-axis and the
eccentricity of the ellipse shown in Figure 108, It is well known
that the Iength of the radius vector, drawn fiom the focus Fto any
. point P of the ellipse, is given by the expression

r=a-tex.

Now dr[dx =e, and since there are no values of x for which dr/dx

vanishes, » has no maximum or minimum. But the only closed

A

(*y)
/
>X
F16.108

curve in which the radius vector has no maximum or minimumis
the circle, Therefore every ellipse is a circle,

INTEGRAL CALCULUS

Paradox 1. To prove that sin x =0 for all values of x32

We know thdt sin 0 =0, and also that sin 2nw =0 for all integral
values of 7, Hence the area bounded by the cutve y =sin x and the

x-axis, between x =0 and x =2nr, is given by the definite integral
of sin x from 0 to 2#x, That is to say,

A =]:' smxdx=[—cosx]o = (c0s 2nn=~co8 0) =~ 14-1=0,

But if there is no area between y =sin x and the x-axis;, the curve
must coincide with the axis. Hence sin x =0 for all values of x.
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Paradox 2. To prove that —1 = +1.

We have

dx _

=% D
Performing the indicated integration on both sides of (1),

log x =log (-x),

o og x =log (—x) @

X=-x,
or

I1=-1,

Paradox 3. To prove that tan x = +i for all values of x.1®
Consider the integral

I= j sin x cos x dx.
If we think of cos x dx as d (sin x), then
I=[sinx d(sin x) =% sin2 x, )
If, on the other hand, we think of sin x dx as —d (cos x), then
I=~[cosxd(cosx)=—~}coszx. @)
From (1) and (2),
sin2 x = —cos2 x, 3)
Dividing both sides of (3) by cos? x, we get
tan2x =1,
Therefore .
tan x = +V/=1 = Li,

Paradox 4. To prove that an infinite area may generate a solid of
revolution whose volume is finite.

The shaded area of Figure 109 is the area under thecurvey =1/x
from x =1 to x=Fk. This area, a function of %, is evaluated as
follows:

13 k. ' .
A(k) = f . ‘é—” =[log x] l=los k square units.
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Fi1G. 109

If the area is revolved about the x-axis, it generates a solid whose
volume is

@ =rf % [-—] (1--) cubic units,

Let k tend to infinity, Then
1lim A(k) =lim (log k) =ce,
k—>o k>
whereas
lim V(&) =lim (1 - ,%)] % cubic usits.
k>
COMPLEX NUMBERS
Paradox 1. To prove that = =014

For all values of 6,
cos 8 =cos (2= 4-9),
and
sin 0 =sin (2r +9). ’
Therefore

cos 0+-isin 6 =cos (2r+6) +17 sin (2 +0),

(cos 0 +4-i sin 0)¢ =[cos (27 +-0) 4 sin (2r+6) I, Q)
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Recall from De Moivre’s theorem that (cos x-+i sin x)* =cos nx
-+isin nx. Hence (1) can be-written in the form

cos i0 47 sin i0 =cos #(2r ++6) +i sin i(2x+6), @

Now apply Euler’s formula, cos x +i sin x =e*, to both sides of
(2). We obtain
3-9 = e—277 "'6_

Dividing both sides of this expression by e—27-0,
e =1,

But e” has the value 1 only when x is zero. Hence 2w =0, and
7 =0,

Paradox 2. To prove that —1 = -+-135

Let x satisfy the equation e” = — 1, Square both sides. Then e2e
=1. Now, as was noted only a few lines above, €2 is 1 only when
2x1is zero. Hence 2x =0, and x =0. Substitute this value of x in the
original equation. Then 0 = - 1, But any number raised to the Oth
power is 41, In particular, e0 = -1, Consequently —1 = --1.

Paradox 3. To prove that —1=+1.

Consider the equation (~ 1)2 = +1..Take the logarithm of both
sides, Then log (~1)2 =log (1) =0. But log (—1)2=2 log (~1).
Therefore 2 log (—~1) =0, and log (—1)=0. Consequently log
(-1 =log(1),or -1 =1,

Paradox 4. Consider the following two linear homogeneous
complex equations:

(a+bi)(p+qi) +(c+di)(r +si) =0,

(@’ +b'D)(p +qi) +(c’ +d'i)(r -+si) =0.

How many conditions must be fulfilled if the equations (1) are to
be compatible?1®

(@) It is necessary and sufficient that the determinant of the co-
efficients vanish — that is, that

(a+bi)  (c+di)
(@ +b%) (c'+d')
211
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This complex equation is equivalent to the two real equations.
ac’—a’'c=bd’—b'd 5
ad’ +bc’'=a'd+b'c. @

(b) The equations (1) are equivalent to the system
ap—bg+cr—ds=0
bp+aq+dr+cs=0 3)
ap—bg+cr—d's=0
bp+ay+dr+c’s=0.
But in order that the equations (3) be compatible it is necessary
and sufficient that
ia —=b ¢ —d
b a d ¢
=0. 4
la" —b" ¢ —d @

A R

This determinant yields, of course, a single real equation.

Which of these two solutions is correct, the one that results in
two equations, or the one that results in a single equation?
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CHAPTER 2
Pages 21-3

Paradox 1. 1t is incorrect to assume that ‘the tail wind on the way
south will speed up the plane to the same extent that the head wind will
retard it on the way north’. Here we are again trying to get an average
raté by averaging two rates maintained over equal distances. To analyse
the problem, call the speed of the wind 50 miles per hour, Then the speed
of the plane from London to Liverpool is 100--50, or 150 miles per hour;
from Liverpool to London, 100~ 50, or 50 miles per hour. Hence the
times for the trips down and back are £23, or %, and 222, or 4, hours
respectively. It follows that the total time for the round trip is 5% hours,
and that the average speed of the plane, in miles per hour, is

total distance _ 400 _ 400 400X3

- = =75,
total time % +4 _136_ 16

Paradox 2. The apple women made the error of calculating their
average price rate by averaging their individual rates of 2 apples a penny
and 3 apples a penny over the same number of apples. To guarantee the
same receipts as those of the first day, they should have determined
their price by dividing the total number of apples by the total number
of pence ~that is, $ =& apples a penny. They actually sold the apples
at the rate of 2% apples a penny. There’s where the missing penny
went.

Paradox 3. The actual strokes occupy no appreciable length of time -
the 5 seconds are accounted for by the 5 intervals between the 6 strokes,
Between 12 strokes there are 11 intervals. Hence the correct answer is
about 11 seconds.

Paradox 4. If the cost of the bottle were 1s, and that of the cork 1d,
then the bottle would cost only 114 more than the cork, Second thought
readily supplies the correct answer: 1s 4d.

Paradox 5. At least, the answer is not 30 hours unless the frog is so
stupid that he doesn’t know when he is well out of a well. At the end of 27
hours he is 3 feet from the top. During the 28th hour he climbs the
remaining 3 feet, and he’s out.

Paradox 6. Need we point out that if the lengths of the trains are
neglected, then slow train and express are the same distance from London
when they meet?
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CHAPTER 3
Pages 36-7

Tt was pointed out in Chapter 1 that in mathematics weare not concerned
with the “truth’ of our definitions or assumptions, but only with their
consistency. The fact that any number (other than 0) raised to the Oth
power is defined as 1 is a case in point. It is easy to visualize a* as the
product-of two a’s, a® as the product of three a's, and so on. But what is
to be done with 4*? We obviously cannot visualize the product of zero -
orno—a’s. Now recall that if @ is any number, and if m and n are positive
whole numbers, then am.a®=gm*», For example, 53.5¢=(5.5.5)
(5.5.5.5)=5.5.5.5.5.5.5=57="5%, If we substitute 0 for m in this
rule, we obtain @°.an =a% " =gn. But if a°.a® =a", we can divide both
sides of this eguation by @ and obtain a® =1. Hence we define a® as 1 for
the sake of consistency in our mathematical processes. On the other hand,
we cannot so define a® if a =0, for the last step would involve division by
O, or 0. This particular point is discussed at length in Chapter 5.

CHAPTER 5§
Pages 86-7

Paradox 1. In step (1) it was assumed that a=>b--¢, or that g—b—¢
=0, We divided by a— b~ ¢, or 0, to get equation (5).

Paradox 2. The left-hand side of each' of the identities assumes the
value ¢ when 1 is substituted for x. This problem serves as additional
evidence that ¢ can be ‘any number’,

Paradox 3. A case of division by zero in false whiskers. By adding 10 to
the left-hand side, we changed the value of x to — 7, Both sides of the
equation were divided by x+7 — now 0 — in step (6).

Pages 89-90

Paradox 1.1f the given equation is solved for x, it is found that x =a-b,
Consequently the numerators in our first result, although equal, are zero
- insufficient grounds for assuming that the denominators are equal. The
second result is disposed of similarly.

Paradox 2. The solution for x is x =g~ b, Hence the fraction (3x—3q
-+3b)/(3x— 3a--3b) is of the form §.

Paradox 3. Here the solutions for x and y are

x=a+b-c,

y=a—b+c.
These values reduce the fraction (x— a— b--c)/(y — a1~ ¢c) to the form
£
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Page 92
This paradox arises from contradictions in the original equations,
which might have been written in factorized form as

(x—y) 2x—-y)=4,
(x—y) (x+3y)=9.
- Itisnowevident at once that these equations are not satisfied when x and
yareequal.
Page 93
In passing from (5) to (6), only the positive signs were taken with the

square roots. There is no contradiction if the negative sign is taken on the
right, for then

bl (2n;-1) =_n+(2n;~1)’ or%%.

Pages 94-5
Paradox 1.1t is assumed in step (1) that a>b. In step (4) both sides of
the inequality are divided by b— g, a negative quantity.
Paradox 2. The logarithm of any number between 0 and 1 is negative
and in step (2) both sides of the inequality are multiplied by log (3).

Pages 96-7

Paradox 1. The error occurs in (3). Let’s use our i’s. Then (1) becomes
i=i,and (3), 1/i=if1. Now (1) is true and (3) is false. For if (3) were true
we should have, on clearing of fractions, i =1, whereas actually #=—1,
In passing from (2) to (3) we attempted to apply to imaginary numbers
the ordinary rule for division of radicals: v/a/b =V a/V/b.

Paradox 2. This is one of the more insidious of the fallacies. The
trouble all occurs in step (1). It seems reasonable enough to argue that
v x—y=V(—1) (y—x) =iV y—x, but this statement is valid only when
x—y is negative, so that y— x is positive. It is perhaps simpler if put this
way: we have said that any imaginary number such as v/ =« (and if this
number is imaginary, a must be positive) can be written as #v/a. We have
not said that the real number Vg can be written as iV — g, for this would
give 2. V@, or — Vg, an immediate contradiction. In the problem under
consideration we can assume that g and b are not equal, for if they
were equal, step (5) would involve division by zero. Then either a>b
or b>a, which means that one or the other of the left-hand sides
of (2) and (3) is a real number, and this fact invalidates the whole
argument,
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CHAPTER 6
Pages 102-6 )
Paradox 1. If the diameters are properly drawn, then the line PS will
not cut the circles in two distinct points M and N, but will pass through
R, as shown in Figure 110. To prove this, draw the diameters and connect

P s
\_/v
Fia. 110

R with P, §, and Q. Since angles PRQ and SRQ are inscribed in semi-
circles, they are right angles. But their sum must therefore be a straight
angle, and this makes PRS a straight line, Finally, since between the two
points P and S only one straight line can be drawn, this line must go
through R.

Paradox 2. In Figure 111, properly drawn, it is readily seen that the
line PE falls outside the rectangle. Our proof for the equality of angles
DAPand EBP is still valid, but it is now evident that the right angle CBG
is no longer a part of the angle EBP.

Paradox 3. Similar to Paradox 2. If the figure were drawn correctly, it
would be found that EK lies completely outside triangle ABC. Although
our proof that /. DBK and / EBK are equal is still valid, the 60° angle
ABC is no longer a part of / EBK.

Paradox 4. Similar to Paradox 2. The perpendicular bisectors actually
meet outside the quadrilateral, as in Figure 66(b), but in such a way that
the line OB lies completely outside as well. Hence, although / AOP
w/1-/3, /BOP=/2+/4,not /2— /4.

Paradox 5. Consider the original proportion AB/BC =AD/DC. Since
B is the internal point of division of 4C, and D the external point, it is
evident at once that AD must be greater than A4B. It follows (see page 94)
that DC must be greater than BC. But in that case Q, the mid-point of
BD, must lie outside the circle, so that the perpendicular bisector of BD
does not intersect the circle at all. In other words there is no point P. Our
proof breaks down completely when we first use P in step (8). -
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Pages 109-11
Paradox 1. The fallacy here is a disguised case of division by zero. We
conclude from step (8) that the denominators must be equal because the
numerators are equal. But the numerators are zero, and this fact invali-
dates the conclusion. (See page 88.) To show that the numerators are
zero, note that the triangles ABC and 4ADC are similar. Hence AC/AD
=ABJAC, or AC*=AB.AD. That is, AC?~ AB.AD =0,
Paradox 2. Suppose we solve (1) and (2) for r and ¢ in terms of p, ¢, and
s. From the equations in question we have

pr—qt=—ps, ’ (a)
qr—pt=ps. (b)
Adding (a) and (b), we have
@+q)r—(p+g)t=0,
@+q) (r—0=0.

The last equation will be satisfied if eitker of the two factors is zero. In
(4) we disregarded the possibility that »— ¢ might be zero, and so had to
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conclude that p-¢ is zero. Since p+q is not zero, r~ t must be zero. Then,
in (4); the fraction (¢—7)/(r— #) becomes §, which is meaningless.

Pages 114-15

Paradox 1. Since the sum of the angles of a spherical triangle can be
anything between (but not including) 180° and 540°, we cannot assume,
as we did, that the sum of the angles is the same (that is to say, x) for any
triangle. Nor is if true to say that “the sum of the angles of triangle 4BC
is equal to the sum of the angles of the three small-triangles minus the
sum of the angles at P,’ for this implies the assumption that (Figure 72)
/. CAP+ / PAB=/ CAB. This is certainly not true when applied to the
angles of spherical triangles.

Paradox 2. This paradox is a rather ingenious one, for the correct
figure is difficult to visualize, and the correct analysis is a bit lengthy,
although it involves only fairly siraple ideas, Let us fix our attention on
PA and the associated sphere and circle. To fix the centre of the circle in
which the plane intersects the sphere whose diameter is P4, drop a per«
pendicular OQ from the mid-point of PA ~from the centre of the sphere,
that is - to the plane m, as in Figure 112, (The radius of a sphere, if
perpendicular to a plane of iqterscction, passes through the centre of the

P

Fi1a. 112

circle of intersection.) Then with Q as centre and Q4 asradius draw the
circle in 2, But now drop a perpendicular PC from Pto m and draw QC.
Sinice AQC is the projection of the line P4 on the plane, AQC willbe a
straight line, Furthermore, since 40 and OPare radii of the same sphere,
they are equal. But OQ isparallelto PC, (Two lines perpendicular to the
same plane are parallel.) Therefore 4Q = QC. (A line parallel to one side
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of a triangle dividg,s the other two sides proportionally.) But this result
means that C must lie on the circle of intersection, and AQC must be a
diameter,

Ifnow we treat in the same way the circle formed by the plane and the
sphere about PB as diameter, our situation in plane m will appear as in
Figure 113. Draw 4D and DB, We have already proved that if AC and

C

B
D ”
F1g. 113

BCare diameters, ABD must be a straight line. (See discussion of Paradox
1, Ch. 6, page 216.) Now return to our original proof, We argued that
since PC is perpendicular to the two intersecting straight lines AC and
CB, it is perpendicular to plane m. True enough. But we applied the same
argument to PD, thinking of AD and DB as intersecting straight lines,
Since AD and DB are parts-of one and the same line, PD need not be
perpendicular to m, even though it is perpendicular to the line ADB.
Finally, for different choices of 4 and B all the circles of intersection
pass through C, so that PC is a perpendicular common to all choices,
The second intersection D is a varying point, In each case PD is perpens
dicular to the corresponding line ADB, but not to plane .

CHAPTER 7

Pages 134-6

Paradox 1. The length of the limiting line appears to be V'Z only
because the limiting line appears to be the hypotenuse of the right trie
angle. Consider the first line, L,, shown in diagram (b) of Figure 79. It is
evident at once that the sum of the horizontal segments is 1, and that the
sum of the vertical segments is also 1. Hence the length of L, is 2. But the
same argument applies to L, and L,, shown in diagrams (c) and (d). That
is to say, in each of these cases the sum of the horizontal segments is 1
as is the sum of the vertical segments. Hence L, and Lg, like L,, are each
2 units long, Now regardless of how many times the number of *steps®
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is doubled and redoubled, the sum of the horizontal segments remains 1,
and the sum of the vertical segments remains 1. Consequently every one
of the broken lines Ly, Ly, Ly, Lg, Ls, Lg, «++ is 2 units long. It follows that
the length of the limiting line is also 2 units, and not /2 imits,
Paradox 2. Consider the curve C;, shown in Figure 80(a). Since the
circumference of a circle is equal to = times the diameter of the circle, the
length of C, is m{A4B). The curve C,, in diagram (b), consists of two
circles, each of diameter (4B)/2. The circumference of each circle is.
w(AB)/2. Therefore the length of C, is 2.7(4B)/2, or #(4B). The curve
C,, in diagram (c), consists of four circles, each of diameter (4B)/4. The
circumference of each circle is #(4B)/4. Therefore the length of C; is
4.7(AB)/4, or n(AB). Similarly, the length of C, is 8.2(4B)/8, or n(4B).
And so on. Consequently the length of every one of the curves Cj, Cy,
Cs, Ci, G, Cs, ... is n(AB), It follows that the length of the limiting curve
is not 2(4B), but #(AB).
" Paradox 3. Consider the curve C;, shown in Figure 81(a). This curve
consists of four semicircles, each constructed on a side of the inscribed
square. Since the circumference of a circle is equal to = times the diameter
of the circle, the length of a semicircle is equal to 3w times the diameter of
the semicircle, Hence the Iength of each semicircle in the figure isequal to
3 times one side of the square, and the length of the four semicircles is
equal to 3 times the sum of the four sides of the square. If we denote the
perimeter of the square by p;, we can express the length of C, compactly
as . p,/2. Again, C, is made up of eight semicircles, each constructed on
one of the eight sides of the inscribed octagon of diagram (b). Hence the
length of Cj is 3 times the sum of the eight sides of the octagon. Or, ifwe
denote the perimeter of the octagon by p,, we can express the length of
C, as 7. p,f2. In the same way the Iengths of Czand Cycan be expressedas
#.psf2 and . p,/2, where p; and p, denote, respectively, the perimeters
of the sixteen-sided and thirty-two-sided inscribed polygons of diagrams
(c) and (d). Therefore the lengths of the successive curves Cy, Cs, Cs, Cy
C;, Cq, ... are respectively,

T A T D, T
2-P1, 2'172, Z-Pa, zvpb 2'1’6’ 2'p69 ey

where D1, Pey Pas Pus Ps» Doy -+ denote the perimeters of the successive
inscribed polygons. But.in introducing the notion of a limiting curve in
general, it was pointed out that it can be proved rigorously that the
sequence of inscribed polygons approaches the circle as a limit. That
is to say, the limit of the sequence of perimeters Py, Ps; D3 P1s Pss Po» =+ ig
the circumference of the circle, or 2zR. Consequently the length of
the limiting curve (which appears to approach the circumference of the
circle) is not 27 R, but 3= times 27R, or #*R.
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Page 154

Bver since Cantor’s discovery of the transfinite numbers 4, and C, mathe-
maticians have been trying to find an infinite class whose transfinite
pumber is greater than 4,, and less than C. All such attempts have been
in vain. The question then arises whether or not the assumption that there
is no transfinite number between 4, and C is a consistent one — that is to
say, whether or not it will ever lead to contradictory results. K. G&del,
an Austrian logician, has succeeded in proving the following theorem:

If the ordinary axioms ~ or assumptions — of the theory of aggregates
are consistent, then the ordinary axioms, together with the assumption that
there is no transfinite number between A, and C, are also consistent.

It is interesting to note further, that Gddel conjectures that the denial
of the assumption in question would also be consistent. If this conjecture
can ever be proved, it will mean that it will never be possible to decide, by
means of the ordinary methods of the theory of aggregates, whether or
not there exists a transfinite number greater than 4, and less than C.

CHAPTER 8
Page 165

Paradox 1. The first solution is wrong, the second right. The quickest
way to settle the matter is to examine a diagram showing all possibilities.
Such a dlagram is given in Figure 114, from which it is easy to see that
the three coins can be tossed in any one of 8 equally likely ways. Of these
8 ways only 2 - the first and eighth — are favourable. Therefore the
oorrect probability is §, or 1.

wes @ ® OO OO OO
®©0 606
mae @ @O @O @O

x 191O,
¥ 1OJO]

In the incorrect solution we argued that two of the coins must come
down alike. Let us suppose, to fix our ideas, that these are heads. We
then assumed that it is just as likely for the third coin to be like the first
two as to be unlike them. A glance at the figure will show that this assump-
tion is not valid. Two (or more) heads appear in 4 of the 8 possible cases -
the first, second, third, and fifth. In only one of these 4 cases are all three
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coins heads. Consequently it is three times as likely for the third coin to
be unlike the other two as to be like them.
Paradox 2. Figure 115 shows that there are 6 possible results in the
-game, The marbles are shown diagrammatically — Peter’s first marble on
the left, his second on the right. The numbers on the marbles indicate

Tt ®@® @ @®® ®@@ %@ ®®@

case case case case case case
1 2 3 4 b
Fi1c. 115

whether that particular marble got first, second, or-third place in the
*game. In the fourth case, for example, Peter’s second marble came first,
Paul’s marble second, and Peter’s first marble third. Peter wins in 4 of the
6 cases—all but thelast 2. Therefore the correct probability is 4, and not 3,
Let us see what is wrong with the second solution suggested. Here it
was argued that the following 4 cases are the only ones possible. (i) Both
of Peter’s better than Paul’s. (ii) Peter’s first better than Paul’s and his
second worse. (iii) Peter’s second better than Paul’s and his first worse.
(iv) Both of Peter’s worse than Paul’s. Now compare these 4 cases,
labelled with Roman numerals, with the 6 cases of Figure 115, labelled
with Arabic numerals. We see that (i) includes (2) and (3), that (ii) is the
same as (1), that (iii) is the same as (4), and that (iv) includes (5) and (6).
Since cases (1) to (6) are equally likely, cases (i) to (iv) are not. Case (iv) -
the only one which makes Peter lose — is more likely than either case (i) or

case (iii). :

CHAPTER 10
Pages 197-201
Paradox 1. The statement that g and b will “never’ meet is incorrect.
Let us assume, in the figure which accompanies the problem, that AB =1,
Denote each of the equal angles ABD and BAC by 6. Since AC=BD =},
the projection of either AC or BD on AB is (3) cos 6. Now CD, being
parallel to' 4B, is equal in length to its own projection on AB. It is there~
fore easy to see that CD=1—cos 6. Similarly, EF=(1—cqs 6)%, GH
=(1-cos )3, ... In general, the length of the nth line drawn between a
and b is (1—-cos 6)». As the construction is ‘continued indefinitely’, n
tends to infinity, And, since 0<cos §<1,
lim (1—cos g)» =0.

n—>c0
Consequently a and b will “ultimately’ meet,
222



APPENDIX
Paradox 2, In steps (4) and (5) we concluded, since

sin (4+5) =sin (B+3),

A+g = B.;..g".

that

This conclusion is not necessarily true. That is to say, if sin x =sin y, x is
not necessarily equal to y, but may be equal to the supplement of y, This
conclusion follows from the fact that

sin y=sin (180°~-y).

Thus, in place of step (5) we may have
C _180°~(B+5).
A+5 =180 (B+ 2

Adding B--(C/2) to both sides of this equation, we obtain
A+B+C=180°
a true result,
Paradox 3, A case of failure to examine the double sign when extracting
the square root in step (2). The left-hand side of (3) should be 4 cos® x
in which case (5) will read

(£cos® x-}-3)*=[(1 —sin?x)¥4-3]2, ¢)

The negative value of the term -:-cos® x must be taken when x has the
value =. The relation (5”) then reduces to 42=43, or 16=16.

Paradox 4. The fallacy here is the same as that noted in Paradox 3,
Steps (2) and (3) should read, respectively,

sin x =+ (1—cos? x)*
sin ¥ = (1 =% cos? x—3 cost x— 3% cos® x—~ ...).
With the double sign, sin x is no longer an ‘even’ function,

Pages 204-5
Paradox 1. A case of misuse of infinity, If thé major axis of the ellipse
is allowed to increase without limit, the area in question — call it either a
semi-ellipse or a parabolic segment — becomes infinite, and the relation

22 a.20),

is meaningless,
Paradox 2. The value of y is zero not only when ¢ is zero, but also when
tis infinite. To be more specific, equations (1) and (2) give
limx=-1, limy=0.

- t—>0
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These observations account for the second point at which the x-axis
intersects the circle — that is, the point (~ 1, 0).

Paradox 3. The first Solution is correct. In order to see how the single
equation (2) reduces to two equations; proceed as follows. Choose a
system of rectangular co-ordinates so that the origin is at the given point
A, and so that the x-axis passes through B. The co-ordinates of 4, B, and
P can then be taken, respectively, as (0, 0, 0), (b, 0, 0), and (x, y, 2)
Equation (2) reduces at once to

yi+z2=0,
y=0 and z=0.

or

Hence two conditions are imposed on the co-ordinates of P.

Pages 206~-8
Paradox 1. The use of the theorem to the effect that

in F& g L)
xfté £(x) xl_lfé g'(x)

is not legitimate in 'this problem. The quantity x is not a variable, but
a constant, At the very beginning of the problem it was assumed that
x=a—b.

Paradox 2. The trouble here lies not in the application, of the theorem
used in Paradox 1, but in the expression to which the right-hand side of
(1) reduces when x has the value 1 — that is to say, in the series 1—1+1
—1-1—1- ... It was argued that this series always$ has the same value,
the word *value® presumably referring to the sum of the series. But the
series is an oscillating series, and so has no definite sum. (Compare this
paradox with that on page 124, in which the series in question is used to
‘prove’ that $=%=3}=%=...)

Paradox 3.1f Pis to lic on CD, x can assume values only between O and
3. The function dS/dx vanishes for no value of x in this range. Therefore
the value of x for which Siis a minimum cannot be found by making
dS|dx zero. For x in the range 0 to 3, .S assumes a minimum value When
x is 3. This fact can be verified by inspection either of the function §
itself, or of its graph for 0<x<3. It is true that the function S is a mini-
mum for x =243, But in this case the distance CP, which is denoted by
3—x, is negative,

Paradox 4. Similar to Paradox 3. The relation between r and x i8
linear, so there is obviously no value of x for which dr/dx vanishes, The
permissible range’of values for x runs from — a to 4. It can readily be
seen by inspection that r is a maximum when x=-}-g, and a minimum
when x=—a.
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Pages 208-9

Paradox 1. For all integral values of n, it is true that sin 21~ =0, but it
is also true that sin nx =0, The area bounded by y=sin x and the x-axis
between 0 and  is equal numerically to the area bounded by the curve
and the axis betwéen 7 and 2, but these two areas are opposite in sign.
It is easy to see that the area obtained by integration from 0 to 2nz cone
sists of an equal number of positive and negative portions, and that the
algebraic sum of these portions is zero.

Paradox 2. The fallacy here lics in the fact that the constant of integra=
tion was overlooked. If two functions are equal, it does not follow that
their integrals are equal — they may differ by a constant. Step (2) should
read

log x=log (~x)4-C.
The right-hand side of this relation reduces to the left-hand side if the
value of C is taken as log (- I). That is to say,

log (~x)+log (~1) =log(~x) (- 1)
=log x.

Paradox 3. Similar to Paradox 2. Substituting 1 - cos? x for sin? x in

),
I=l (1-cos®x)

_1_1

3273
This result differs from the value of 7 as given in step (2) only by the
constant 3.

Paradox 4. There is no fallacy in the argument. The arez under the
curve is generated by the ordinate, 1/x. As x increases without limit, 1/%
tends to zero, but so slowly that the entire area is infinite, The volume, on
the other hand, is generated by the cross section of the solid - a quantity
proportional to 1/x2. As x increases without limit, the quantity 1 Ix’
tends to zero much more rapidly than 1/x — rapidly enough, as a matter
of fact, to make the entire volume finite. (Compare with the fact that the

series 11.1.1.1
stytgtstetyt

cos? x,

diverges to infinity, whereas the series
1,1, 1 1. 1 1
stgtgatatatat .

converges to a finite limit.)
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Pages 210-11
Paradox 1. De Moivre’s theorem,

(cos x+-i sin x)* =cos nx--i sin nx,

is valid only for real values of n. In the ‘paradox under consideration it
was incorrectly assumed that this theorem could be applied when 7 has
the value i, In addition, it is incorrect to argue that e= has the value 1 only
when x is zero. True enough for real values of x, but not for complex
values. In order to verify this statement, substitute in Euler’s formula,

eie = cos x-}-isin x,

the value x=2#nr It is seen at once thateznmihas the value 1 for all integral
values of n..

Paradoxes 2 and 3. Similar to Paradox 1, Paradox 2 is the exponential
form, and Paradox 3 the logarithmic form, of one and the same argument,
By Euler’s formula, the equations ==~ 1 and e**=1 of Paradox 2 are
satisfied if x =nni, where n is any integer. The equation ¢2*=1 does not
necessarily imply that 2x, and hence x, has. the value zero.

Paradox 4. To show that the second solution reduces to the first, inter-
change the second and third rows of the determinant of equation (4).,
Then

a -b ¢ =d
al — bl cl — dl
b a d ¢
¥ o d ¢
Now apply a theorem of Laplace on the development of determinants, -
, The result is the equation

(ac’- )4 (bd’ —~b'd)*+-(ad’— a’d)? ' '
+(bcl'- be)r~2(a’'b—ab’) (¢’d—cd’) =0,
‘This equation can be written in the form
[(ac'—a’c)— (bd’ — b'd)r+1(ad’ +be)— (a’d+Db'e)* =0,

§ince a, b,c,d, a’, b’, ¢’, and 4’ are all real quantities, this singleequation
is equivalent to the two.equations

ac’—a’c=bd’—b'd,

ad’+be’ =a’d+:b’ .
These equations are, of course, the equatioﬁs (2) reached in the first
solution,

=0,
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CHAPTER 2

1. Good source books for material of this sort are W, W. R. Ball,
Moathematical Recreations and Essays, London (Macmillan), 1931 (10th
ed,), and W. Lietzmann, Lustiges und Merkwiirdiges von Zahlen und
Formen, Breslau (Hirt), 1930 (4th ed.).

2. Lewis Carroll (C. L. Dodgson), Further Nonsense, New York
(Appleton), 1926, pp. 91, 92.

3. Some of these examples are to be found in H, E. Dudeney, Amuse-
ments in Mathematics, London (Nelson), 1917, pp. 8, 9.

. 4, The author’s attention has been called to the following actual
instance of an even greater complication in the family of the second wife
of Percy Bysshe Shelley, the famous English poet.

Gilbert Mary William Mary Jane Clairmont
Imlay_—Wollstonecraft’T GodwinT ? T
Fanny Godwin Mary William |
(illegitimate child) (Shelley’s Jane Charles
2nd wife) (Called Clair -
later Byron’s
mistress)

5. Deceased Wife’s Sister Act of 1907, and Deceased Brother’s Widow
Actof 1921,

CHAPTER 3

1. W. W. R. Ball, Mathematical Recreations and Essays, London
(Macmillan), 1931 (10th ed.), p. 229, This is Ball’s version of de Parville’s
account in La Nature, Paris, 1884, part I, pp. 285, 286.

2. Theauthor is indebted to H. Steinhaus for this neat way of present-
ing the largest prime. See his Mathematical Snapshots, New York
(Stechert), 1938, p. 12. (See Additional Notes on p. 233.)

3. Information on such topics as Fermat’s numbers, perfect numbers,
and the division of the circle can be found in almost any history of mathe-
matics. See, for example, D. E. Smith, 4 History of Mathematics, New
York (Ginn), 1925. A good discussion of the first two of these three
topics is to be found also in Ball, op. cit., pp. 37-40.

4. F. Cajori, A History of Elementary Mathematics, New York (Mac-
millan), 1914, pp. 1-18.
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5. For a complete discussion of the theory of this game ~ commonly
called nim ~ see C. L. Bouton, Annals of Mathematics, series 2, vol. 3
(1901-2), pp. 35-9.

6. See, for example, Ball, op. cit., pp. 4-13; also W, Lietzmann,
Lustiges und Merkwiirdiges von Zahlen und Formen, Breslau (Hirt), 1930
(4th ed.), pp. 153-69. Perhaps the best popular collection of mind-reading
tricks involving numbers is to be found in R. V. Heath, Marhemagic, New
York (Simon & Schuster), 1923.

CHAPTER 4

1. Compare W. W. R. Ball, Mathematical Recreations and Essays,
London (Macmillan), 1931 (10th ed.), pp. 52-4. According to Ball;
earliest reference to this paradox is Zeitschrift fiir Mathematik und
Physik, vol. 13 (1868), p. 162. See also American Mathematical Monthly,
R. C. Archibald, vol. 25 (1918), p. 236; and W. Weaver, vol. 45 (1938),
p. 234.

2. See, for example, A. H. Church, On the Interpretation of Phenomena
of Phyllotaxis, London (Oxford University Press), 1920.

3. The equation in polar co-ordinates of the logarithmic spiral is
r=ad, or §=log,r.

4. Jay Hambidge has written a number of books on dynamic sym-
metry. Perhaps the best general discussion of the relation of the Fibonacci
series to nature and to art is to be found in his Practical Applications of
Dynamic Symmetry, New Haven (Yale University Press), 1932. This book
contains numerous illustrations of plant groewths, shell spirals, and the
like.

5. For a complete discussion of curves of constant breadth, see H.
Rademacher and O. Toeplitz, Von Zahlen und Figuren,Berlin (Springer) ,
1930, pp. 128-41.

6. Galileo Galilei, Dialogues Concerning Two New Sciences, New York
(Macmillan), 1914, pp. 20-6. This book is an English translation of the
original Italian text, published in Leyden in 1638,

7. See, for example, W. W. R. Ball, op. cir., pp. 170-81, for this pro-
blem and some of its generalizations.

8. This surface is discussed at length in D. Hilbert and S. Cohn-
Vossen, Anschauliche Geometrie, Berlin (Springer), 1932, pp. 271-6.

9. Good photographs of the Mdbius strip and other strips discussed
here are to be found in H. Steinhaus, Mathematical Snapshots, New
York (Stechert), 1938, pp. 112-16.

10. W. W. R. Ball, op. cit., pp. 321--36. See also, by the same author,
String Figures, Cambridge (Heffer), 1921 (2nd ed.).

11. Figure is from H. Steinhaus, op. cit., p. 118.
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CHAPTER 5

1. W. F. White, A Scrap-Book of Elementary Mathematics, Chicago
(Open Court), 1910 (2nd ed.), p. 88.

2. J. R, D’Alembert, Opuscules mathématiques, Paris, 1761, vol. 1,
p. 201,

3. W, Lietzmann, Trugschliisse, Leipzig (Teubner), 1923 (3rd ed.), p. 8.

4. W. Lietzmann, op. cit., p. 40.

5. W. F. White, op. cit., p. 78.

6. W. Lietzmann, op. cit., p. 14.

7. E. Gelin, Mattiesis, vol. 13 (1893), p. 224.

8. W. Lietzmann, op. cit., pp. 14, 15.

9. W. F. White, op. cit., p. 84.

10. W. Lietzmann, op. cit., pp. 9, 10.

11. The three following examples are from W. Lietzmann, op. cit., pp.
12,13.

12, See, for example, B. Russell, Introduction to Mathematical Philoe
sophy, London (Allen & Unwin), 1919, pp. 1-19.

13. W. F. White, op. cit., p. 85.

14. W. W, R. Ball, Mathematical Recreations and Essays, London
(Macmillan), 1931 (10th ed.), p. 30. Attributed to G. T. Walker.

CHAPTER 6

1. See, for example, T. L. Heath, The Thirteen Books of the Elements
of Euclid, Cambridge (Univ. Press), 1926 (2nd ed.), vol. 1, p. 7.

2. W. W. R. Ball, Mathematical Recreations and Essays, London
(Macmillan), 1931 (10th ed.), p. 48. Ball’s discussion is by no means as
detailed as the one given here.

3. See, for example, Hawkes, Luby, and Touton, New Plane Geo~
metry, New York (Ginn), 1917, p. 405.

4. W. W, R, Ball, op. cit., p. 45.

5. W. W.R. Ball, op. cit., p. 49.

6. M. Laisant, Mathesis, vol. 13 (1893), p. 224,

7. P. Stickel, Archiv der Mathematik und Physzk series 3, vol. 12
(1907), p. 370.

8. Preussische Lehrerzeitung, about 1913,

9, M. Coccoz, L' Hlustration, Paris, 12 Jan. 1895.

10. W. Lietzmann, Trugschliisse, Leipzig (Teubner), 1923 (3rd ed)),
pp. 32, 33.

11, W. Lietzmann, op. cit., pp. 31, 32.

12. W. Lietzmann, op. cit., pp. 35, 36.

13. G. Gille, Mathesis, vol. 29 (1909), p. 97.
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CHAPTER 7

1. An exhaustive bibliography of researches concerning Zeno’s para=
doxes is to be found in an article by F. Cajori in American Mathematical
Monthly, vol. 22 (1915), pp. 1-6, 292-7.

2. For a technical discussion of the convergence and divergence of
infinite series, refer to any good text on the subject — for example, T. J.
Bromwich, An Introduction to the Theory of Infinite Series, London
(Macmillan), 1908.

3. Thenumbere,anirrationalnumber,isasimportanttocalculusasthe
number = is to geometry. Its value to five decimal places is 2:71828. ‘Log,
2 signifies the logarithm of 2 to the base e — the power to which e must
be raised if the resulting number is to be equal to 2. The proof of the con~
vergence of the series in question is given in T. J. Bromwich, op. cit., p.51.

4. Bernard Bolzano, Die Paradoxien des Unendlichen, published post~
humously, edited by Fr. Piihonsky, Leipzig (Reclam), 1851. Reprinted
Leipzig (Meiner), 1920,

. 5. Annales de mathématique, vol. 20 (1830), p. 364, Article signed
M.R.S.

6. We shall see presently that the same series can be summed in other
ways. W. W. R. Ball believes that this particular form of the paradox
first appeared in his Algebra, Cambridge, 1890, p. 430.

7. For the proof of this theorem see, for example, T. J. Bromwich,
op. cit., pp. 68-70. Although Riemans proved the theorem in 1854, it was
not published until 1867.

8. This form of the paradox is attributed to Dirichlet.

9, G. Chrystal, Algebra, Edinburgh, 1889, vol. 2, p. 159.

10. W, Lietzmann, Trugschliisse, Leipzig (Teubner), 1923 (3rd ed.),
p. 43,

11, Galileo Galilei, Dialogues Concerning Two New ‘Sciences, New
York (Macmillan), 1914, pp. 27-9. This book is a translation of the
original Italian text, published in Leyden in 1638,

12. Journal fiir Mathematik, vol. 11 (1834), p. 198,

13. The first two of the pathological curves discussed here were
originally constructed as examples of non-differentiable functions — con-
tinuous functions whose graphs have ro tangent at any point. The snow=
flake curve was designed by E. Kasner in 1901, and appears in his Mat/e-
matics and the Imagination, New York (Simon and Schuster), 1940. An
exhaustive historical development and bibliography of such functions is
to be found in A, N. Singh, The Theory and Construction of Non-Differen-
tiable Functions, Lucknow. (Kishore), 1935.

14. 'W. Sierpifiski, Bulletin de I’ Académie des Sciences de Cracovie, A
(1912), pp. 463-78.
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15. W. Sierpifiski, Comptes rendus de l’ Académie des Sciences & Parls,
vol. 160 (1915), p. 302,

16. L. E. J. Brouwer, Mathematische Annalen, vol. 68 (1909), p. 427.
Our construction is an adaptation, due to H. Hahn, of Brouwer’s original
construction,

17. Galileo Galilei, op. cit., pp. 31-3.

18. Proof of the fact that the number of rational numbers is A;, while
the number of real numbers is greater than 4, is included in Cantor’s
first contribution to the theory of aggregates. See Journal fiir Mathe-
matik, vol. 77 (1874), pp. 258-62.

19. It should be pointed out that the proof concerning the unit square
and the unit line presents certain difficulties which were omitted for the
sake of brevity. For example, our conclusion that ‘there are no more
points in the unit square than in the unit line’ is true, but we did not show
that the number of points in the square is equal to the number of points in
the line. In other words, we merely showed that to every point P of the
square there corresponds a unique point Q of the line. Certain modifica-
tions must be made in the representation of z if the converse is to be
established. These difficulties are discussed in, for example, F. Klein,
Elementary Mathematics from an Advanced Standpoint, New York (Mac-
millan), 1932, pp. 257-9. This book is a translation of the third German
edition.

20. Proof of these results was first given by Cantor in Journal fiir
Mathematik, vol. 84 (1878), pp. 242-58.

21. That the number of transfinite numbers is infinite was first estab-
lished by Cantor in Mathematische Annalen, vol. 21 (1883). Later he gave
simpler proofs of this result and of some other previous results in Jahres-
berichte der Deutschen Mathematiker-Vereinigung, vol. 1 (1890~1), pp.
75-8.

CHAPTER 8

1. Itis unfortunate that the first letter from Pascal to Fermat has been
lost. A number of the later letters which passed between these two men
can be found, translated into English, in D. E. Smith, 4 Source Book of
Mathematics, New York (McGraw-Hill), 1929, pp. 546-65.

2. 1. Todhunter gives an account of this in his History of the Theory of
Probability, London (Macmillan), 1865, pp. 258, 259.

3. F. Galton, Nature, vol. 49 (1894), pp. 365, 366.

4. J. Bertrand, Calcul des probabilités, Paris (Gauthier Villars), 1889,
pp. 3, 4.

5. J. Bertrand, op. cit., pp. 2, 3.

6. The problem can be solved by the use of Bayes’ theorem, See, for
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example, T. C. Fry, Probability and its Engineering Uses, New York (Van
Nostrand), 1928, pp. 121, 122,

7. Both examples are from W. Lietzmann, Trugschliisse, Leipzig
(Teubner), 1923 (3rd ed.), p. 16.

8. J. Bertrand, op. cit., p. 4.

9. Paradox 1 is from J. von Kries, Die Principien der Wahrschein-.
lichkeitsrechnung, Freiburg, 1886, Paradoxes 2, 3, and 4 are from Bert-
rand, op. cit., pp. 4-7. For further discussion of problems of this sort see
E. Czuber, Wahrscheinlichkeitsrechnung, Leipzig (Teubner), 1938 (5th
ed.), pp. 80-118.

10. This conclusion can be deduced from the following three theorems
of plane geometry. (1) In any triangle the centre of the circumscribed
circle is the point of intersection of the perpendicular bisectors of the
sides. (2) In an equilateral triangle the perpendicular bisector of any side
coincides with the median to that side. (3) In any triangle the medians
intersect in a point which is two thirds the distance from any vertex to the
mid-point of the opposite side.

11. The principle of insufficient reason is discussed at length in J. M.
Keynes, A Treatise on Probability, London (Macmillan), 1921, pp. 41-64.

12, J. Bertrand, op. cit., pp. 31, 32.

13. See, for example, the discussion by R. E. Moritz, American
Mathematical Monthly, vol. 30 (1923), pp. 14-18, 58-65.

14, This is the St Petersburg paradox in disguise.

15. Lewis Carroll (C. L. Dadgson), Pillow Problems, London (Mac-
millan), 1894, p. 18.

CHAPTER 9

1. B. Russell, Introduction to Mathematical Philosophy, New York
(Macmillan), 1920 (2nd ed.), p. 194.

2. B. Russell, Revue de métaphysique et de morale, vol. 14 (1906), pp.

' 627-50. See also, by the same author, American Journal of Mathematics,

vol. 30 (1908), pp. 222-62.

3. More detailed discussions of the logical paradoxes can be found in
a number of places. See, for example, B. Russell and A. N, Whitehead,
Principia Mathematica, Cambridge (Univ. Press), 1935 (2nd ed.), vol. 1,
p. 60 ff.; C. I. Lewis and C. H. Langford, Symbolic Logic, New York
(Century), 1932, pp. 438-85; and so on.

4. C. Burali-Forti, Rendiconti del circolo matematico di Palermo, vol.
11 (1897), pp. 154-64.

5. J. Richard, Revue générale des sciences, vol 16 (1905), p. 541. A
less technical discussion of this paradox can be found in an article by
A. Church, American Mathematical Monthly, vol. 41 (1934), pp. 356-61.
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6. An excellent discussion of trends in mathematics from the very
beginning of the subject is to be found in E. T. Bell, The Development of
Mathematics, New York (McGraw-Hill), 1940, The first part (pp. 511~
536) of the last chapter of this book is devoted to the most recent investi-
gations into the foundations of mathematics. See also T. Dantzig,
Number, the Language of Science, New York (Macmillan), 1930, pp.
224-48.

CHAPTER 10

1. This argument has been attributed to Proclus (fifth century A.D.).

2. Mathesis, vol. 23 (1903), p. 133.

3. W. Lietzmann, Trugschliisse, Leipzig (Teubner), 1923 (3rd ed.),
PD. 44, 45.

4. Mathesis, vol. 10 (1890), pp. 222-4. Article signed ‘P. M.’

5. W. W. R. Ball, Mathematical Recreations and Essays, London
(Macmillan), 1931 (10th ed.), p. 51. Attributed to R. Chartres.

6. W. Lietzmann, op. cit., p. 37.

7. J. L. Coolidge, American Mathematical Monthly, vol. 38 (1931),
Pp. 222, 223. The solution given in the Appendix was suggested by G.
Bareis, same periodical, vol. 39 (1932), p. 29.

8. W. Lietzmann, op. cit., pp. 45, 46.

9. W. Lietzmann, op. cit., p. 42.

10. W. Lietzmann, op. cit., pp. 47, 48.

11, W. W. R. Ball, op. cit., p. 52.

12. W. Lietzmann, op. cit., p. 49.

13, W. Lietzmann, op. cit., pp. 50, 51.

14. W. Lietzmann, op. cit., pp. 11, 12.

15. Paradoxes 2 and 3 are both from W. W, R, Ball, op. cit., p.29. The
second is attributed to Johannes Bernoulli.

16. J. L. Coolidge, American Mathematical Monthly, vol. 21 (1914),
p. 184, The solution given in the Appendix was suggested by G. Loria,
same periodical, same volume, p. 327.

ADDITIONAL NOTES TO CHAPTER 3

2 (contd). In 1952 five still larger prime numbers of the form 27 -1
were discovered by R. M. Robinson, using the SWAC (The National
Bureau of Standard’s Western Automatic Computer). They are 25211,
20071 21200 1~ 22203 _ | and 2228 - |, The SWAC tested the last of
these numbers in about an hour, roughly the equivalent of more than
60 years of work for a person using a desk calculator.

2a. In accordance with the preceding note, five additional perfect
numbers, corresponding to n=521, 607, 1279, 2203, and 2281, are now
known. The largest, 22280 (22281 — 1) is a number of 1372 digits,
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Absolutely convergent'series, 126-7

Achilles and tortoise, 120-1

Adjectives, 189-90

Algebraical fallacies, 80-97

Algebraical paradoxes, 80-97. See
also Arithmetical paradoxes

Alternating series, 123

Analogy, reasoning by, 112-14

Analytical geometry, paradoxes in,
204-6

Ancestors, 31

Anchor-ring, 68, 79

Angles, spherical, 114; unequal, are
equal, 1034

Apples, 22

Approximate numbers, 30

Archibald, R. C., 228

Archimedes, 117

Area-filling curve, 139 f.

Areas, 52, 53-4, 66, 131, 2014, 209~
210

Arithmetic, of the infinite, 144-58;
paradoxes, 15-23, 28-51, 116-30,
144-58; the infinite in, 116-30

Autological and heterological, 190

Average rates, 20-1

Average speed, 20~1

Axioms, 13-14; consistency of, 13,
86, 214, 221; misuse of, 80-3,
871

Bag of counters, 182-4

Ball, W. W. R., 9, 227, 228, 229, 230,
233

Barber, village, 188 f.

Bareis, G., 233

Bear hunt, 15f.

Bell, E. T., 233

Bellows, G., 59

Bernoulli, D., 178

Bernoulli, Jacob, 66

Bernoulli, Johannes, 66, 233

Bernoulli, N., 178

Bertrand, J., 165, 171, 178, 231

Bertrand’s box, 166-7

Bilateral surfaces, 73, 74

Billion, examples of size of, 29 f.

Binary multiplication, 41-2

Binary number system, 40-7

Black and white counters, 182-4

Bolzano, B., 123, 124, 125, 144, 230

Bookworm’s trip, 11

Bottle and cork, 23; Klein’s, 72-3

Boundary line common to three
countries, 142-4

Bouton, C. L., 228

Boxes and coins, 166-7

Brachistochrone, 66

Bridges of Konigsberg, 69-70

Bromwich, T. J., 230

Brothers and sisters, 25-7, 227

Brouwer, L. B. J., 142, 195, 231

Brouwer’s map, 1424

Burali-Forti, C., 192, 195, 232

Cajori, F., 227, 230

Calculus, paradoxes in, 206-10

‘Cancellation, illegal, 83

Cantor, G., 145, 146, 148, 149, 152~
153, 192, 221, 231

Car trip, 20-1

Carroll, Lewis, 16, 55, 182, 227, 232

Cats, 81

Chain letters, 32

Chessboards, 35-6

Chord in a circle, random choice of,
172-4

Chrystal, G., 230

Church, A., 232

Church, A. H., 228

Circles, 53,106-7, 133-4, 135-6, 205,
208; chords of, random choice of,
172-4; division of, 37-9, 227; roll-
ing, 60-1, 63-8; vicious, 186-96
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Circular cylinder, 201-4

Classes, infinite, 11618, 144-58,192,
194-5, 221; non-self-membered,
193 £.; self-membered, 193 f.

Class of all classes, 192

Clocks, 16-17, 23

Coat and waistcoat trick, 77

Coefficient, 45~7

Cogent reasonists, 176-7

Cohn-Vossen, S., 228

Coins, and boxes, 166-7; rolling, 61;
tossing, 160-1, 164-5, 179-81

Collinear points, 205 f.

Colouring of maps, 77-9

Colour of bear, 16

Commandment, Eleventh, 86

Complex numbers, 210-12, Seealso
Imaginary numbers

Consistency of axioms, 13, 85f.,214,
221-2

Constant breadth, curves of, 62-3,
228

Constructions, ruler and compasses,
38-9

Convergent series, 122-30

Coolidge, J. L., 233

Cork and bottle, 23

Correspondence, one-to-one, 146-57

Cosines and sines, 199-200, 208-9

Counters, bags of, 1824

Counting, 145-6, 150

Cretans, 186 f.

Curtate cycloid, 65, 67

Curves, area-filling, 139; limiting,
133-44; of constant breadth, 62—
63, 228; of points of intersection,
142, 144; of quickest descent, 66;
pathological, 136-42, 230; simple
closed, 70 f.; snowflake, 137-9,
230;.step, 135-6. See also Circle,
Curtate cycloid, Cycloid, Ellipse,
Hypocycloid, Logarithmic spiral,
Pzgabola, Prolate cycloid, Troch-
oi

Cycloid, 65-8; curtate, 65, 67; pro-
late, 67

Cylinder, circular, 201-4
Czuber, E., 232

DrAlembert, J. 16 R., 163, 229

Dantzig, T., 233

Decimal number system, 41

Decimals, non-terminating, 152, 157;
repeating, 149

Defective numbers, 39

Definition, domain of, 84

De Moivre, A, 211

Denary number system, 41-2

Density and volume, 172

Dice throwing, 48, 161-2, 179

Dirichlet, P. G. L., 230

Discs, and pegs, 33-4; rolling, 60-1,
63-8

Dissection of square, 534

Distorted figures, 98-106

Divergent series, 1225

Division, by zero, 81, 85-8, 109; of
circle, 37-9, 227

Dodgson, C. L. See Carroll, Lewis

Dollars, Northian and Southian, 18-
19

Domain of definition, 84

Double sign in square root, 82, 934

Drunkard, 82

Dudeney, H. E,, 227

Duodecimal number system, 41

Dynamic symmetry, 59, 228

Egg and a half, 23

Eleventh Commandment, 86
Ellipse, 204, 208

Epimenides, 186

Equations, systems of, 81,92,211-12
Euclid, 36, 39, 98, 132

Euler, L., 37, 39, 69-70, 211
Exceptions to rules, 187-8
Excessive numbers, 39
Exponentials, 211

Fallacies, algebraical, 80-97; geoe
metrical, 98-115
Family relationships, 25-7, 227
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Fathers and sons, 11, 25

Fermat numbers, 36-7, 39, 227

Fermat, P., 36, 39, 159, 231

Fibonacci (Leonardo of Pisa), 55

Fibonacci series, 53-9, 228

Figures, distorted, 98-106

Forecasters, weather, 178

Foreign exchange, 18-19

Foundations of matheratics, 195-6,
233

Four-colour problem, 77-9

Fractions, 834, 88-90, 207

Frege, G., 194

Frog in a well, 23

Fry, T. C., 232

Functional relationship, 83

Galileo 130, 131, 144, 228, 231

Galton, F., 231

Gambling, 159-60, 17982

Gauss, C. F., 39

Gelin, B., 229

Generations, 31

‘Geography, 15-16

Geometrical fallacies, 98~115

Geometrical paradoxes, 53-79, 98-
115, 130-42, 197-200, 2014

Geometry, the infinite in, 130-42

Gille, G., 229

Godel, K., 221

Golden section, 56-9

Grains of wheat, 35-6

Hahn, H., 231

Hambidge, J., 59, 228

Hanoi, Tower of, 334

Harmonic series, 122, 127

Heath, R, V., 228

Heath, T. L., 229

Hemispheres, northern and souths
ern, 11-12

Heterological and autological, 190

Hilbert, D., 195, 228

Horses, seventeen, 19

Hotel accommodations, 18

Hypocycloid, 67

Tilegal cancellation, 83

Illegitimate son, 26

Hlusions, optical, 52-3

Imaginary numbers, 95~6; practical
applications of, 95. See also Com-
plex numbers

Impossibility of motion, 118-20

Indians, 25

Inequalities, 94-5

Infinite, arithmetic of the, 144-58;
in arithmetic, 116-30; in geometry,
130-42; in probability, 167-75;
paradoxes of, 116-58

Infinite classes, 116-17, 144-58, 192,
194-5, 221

Infinite series, 118-30, 144, 200, 230,
See also Series

In-laws, 25-6, 27

Inside and outside, 68-73

Insufficient reasonists, 176~7

Integer, least, 189

Island and lake, 11-12

Isosceles triangle, 98-102, 198-9,
207

Jewellery, 17

Kasner, E., 230

Keynes; J. M., 232

Klein, F., 231

Klein’s bottle, 72-3
Knots, 75-7

Konigsberg bridges, 69-70
Kries, J. von, 232,

Laisant, M., 229
Lake and island, 11-12
Langford, C. H., 232
Laplace, P, S., 160, 185
Large finite numbers, 28-36, 116;
notation for, 30
Laws, paradoxical, 26-7
Lawyer’s suit, 188
Leaf arrangement, 55-6
Least integer, 189
Leibnitz, G, W,, 124
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Letters, chain, 32

Lewis, C. L., 232

Liars, 11, 186

Lietzmann, W,, 228, 229, 230, 232,
233

Life on Mars, 176-7

Limiting ¢urves, 13342

Limit of a series, 119-30

Lines, non-parallel, 197-8; parallel,
52 f.; points of, 154~7, 231; points
of, random choice of, 167-8

Line segments, unequal, are equal,
108-11

Logarithmic series, 123, 125-9

Logarithmic spiral, 57-9, 228

Logarithms, 94-5, 208-10, 211, 230

Logic, paradoxes in, 186-96, 232

Logical types, theory of, 191, 195

Loria, G., 233

Map, weird, 1424

Map-colouring, 77-9

Marbles, 161, 165, 169

Mars, life on, 176-7

Matches, piles of, 43-7

Match game, 43-7

Mathematics, foundations of, 195-6,
233; Russell’s definition of, 14

Maxima and minima, 207-8

Méré, Chevalier de, 159

Milk and water, 23-4

Mind-reading tricks, 47-51, 228

Minima and maxima, 207-8

Missing penny, 22

Misuse of axioms, 80-3, 87 f.

Mixture, milk and water, 23-4

Mobius strip, 74-5, 228

Moritz, R. E., 232 )

Motion, circular and straight-line,
67-8; impossibility of, 118-20;
Zeno’s paradoxes, 118-21, 230

Multiplication, binary, 41-2

Natural numbers, 117-18, 144-7,
148,149 1,
Nephews and uncles, 27

Newton, I., 124

Nim, game of, 43-7, 228

Nine, properties of, 49-51

Non-parallel lines, 197-8

Non-self-membered classes, 193 f.

Non-terminating decimals, 152, 157

Northia and Southia, 18-19

North Pole, 15-16

Notation, for large finite numbers,
30; positional, 40-1, 48-9

Numbers, approximate, 30; com-
plex, 210-12; detective, 393 exces-
sive, 39; Fermat, 36-7, 39, 227;
imaginary, 95-6; large finite, 28—
36, 116; natural, 117-18, 144-7,
148, 149 f.; notation for large fin~
ite, 30; perfect, 39, 227; practical
applications of imaginary, 95;
prime, 36-7, 39-40, 51, 169, 227;
random choice of, 170-2; rational,
149-51, 231; real, 151-6, 231;
theory of, 36-9; transfinite, 146+
58, 192, 194 f., 221, 231; unequal,
are equal, 81, 84-94, 96 f., 210-11

Number systems, binary, 40~7; deci-
mal, 41; denary, 41-2; duodeci-
mal, 41

One-sided surfaces ,72-4
One-to-one correspondence, 146-57
Opticalillusions, 52-3

Oscillating series, 124~5

OQunces and pounds, 81

Outside and inside, 68-73

Paper, stack of. 32-3; strips, 74-6

Parabola, 204

Paradox, algebraical, 80-97; arith-
metical, 15-23, 28-51, 116-30,
144-58; definition of a, 12; geo-
metrical, 53-79, 98-115, 130-42,
197-200, 201-4; in analytical geo-
metry, 204-6; in calculus, 206-10;
in logic, 186-96, 232; in probabil-
ity, 159-85; mathematicalimplica~
tions of, 12-14, 192-6; of the
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infinlite, 116-58; simple, 15-27;
topological, 68-79; trigonometri-
cal, 198-200

Parallel lines, 52 f.

Parallel postulate, 132-3

Pascal, B,, 159, 231

Path of quickest descent, 66

Pathological curves, 136-42, 230

Pegs and discs, 33-4

Penny, missing, 22

Perfect numbers, 39, 227

Perpendiculars, from point to line,
102 f.; from point to plane, 115

Piles of matches, 43~7

Plane in space, random choice of,
174f.

Plane, points of a, 155-7, 231

Plane trip, 21 f.

Points, collinear, 205 f.; of a line,
154-7, 231; of a line, random
choice of, 167-8; of a plane, 155-7,
231; of a sphere, random choice
of, 175; of intersection, curve of,
142-4

Polygons, sequences of, 133-42

Positional notation, 40-1, 48-9

Postulate, parallel, 132-3

Postulates. See Axioms

Pounds and ounces, 81

Powers of two, 3046

Predictions, weather, 178

Piihonsky, Fr, 230

Prim; numbers, 36-7,39-40, 51, 169,
22

Probability, fundamentals of, 160-3;
paradoxes in, 159-85; practical
applications of, 184-5; the infinite
in, 167-75

Proclus, 233

Prolate cycloid, 67

Prophecy, world’s end, 34,

Proportions, 84, 88-90; properties
of, 89

Protagoras, 188, 190

Public debt, size of, 29

Pythagorean theorem, 108, 131, 134

Quadrilateral, 104-6
Quickest descent, curve of, 66
Quoit, 67 £., 78-9

Rademacher, H., 228

Random choice, of a chord in a
circle, 172—4; of a number, 170-2;
of a plane in space, 174 f.; of a
pointin aline, 167-8; of points on
a sphere, 175

Rates, average, 20~1

Ratio, 85, 87-90; golden section, 56—
59

Rational numbers, 149-51, 231

Real numbers, 151-6, 231

Rearrangement of a series, 126-
130

Reasoning by analogy, 112-14

Rectangle, golden section, 57-9

Relationship, functional, 83

Relationships, family, 25-7, 227

Repeating decimals, 149

Richard, J., 194, 195, 196, 232

Riemann, G. F, B,, 127, 230

Rings, 17

Rollers and slab, 61-3

Rolling circles, 60-1, 63-8

Rolling coins, 61

Rolling discs, 60-1, 63-8

Rope trick, 76-7

Roulette, 181-2

Ruler and compass constructions,
38-9

Rules, exceptions to, 187-8

Russell, B., 13, 186, 191, 194, 195,
229,232

Russell’s definition of mathematics,
14

St Petersburg, 178-81, 232
Salaries, 17, 20

Savings scheme, 32

Section, golden, 56-9

Seed arrangements, 58
Self-membered classes, 193 f.
Sequences of polygons, 13342
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Series, absolutely convergent, 126-
127; alternating, 123; convergent,
122-30; divergent, 122-5; Fibon-
acci, 53-60, 228; harmonic, 122,
127;infinite, 118-30, 144,200, 230;
limit of a, 119-30; logarithmic,
123, 125-9; oscillating; 124-5; re=
arrangement of a, 126-30; simply
convergent, 127 f,; sum of a, 118~
130

Seventeen horses, 19

Shelley, P. B., 227

Sierpiniski, W., 139, 141, 231

Sign, double, in square root, 82, 93—
94

Simple closed curve, 70 f.

Simple closed surface, 72

Simple paradoxes, 15-27

Simply convergent series, 127 f.

Simultaneous equations., See Sys-
tems of equations

Sines and cosines, 199-200, 208-9

Singh, A. N., 230

Sisters and brothers, 25-7, 227

Slab and rollers, 61-3

Smith, D. E., 227, 231 -

Snowfiake curve, 137-9, 230

Son, illegitimate, 26

Sons and fathers, 11, 25

Space, plane of, random choice of,
1741,

Speed, average, 20-1

Sphere, 71; points of, random choice

- of, 175

Spherical angles, 114

Spherical triangles, 114

Spiral, logarithmic, 57-9, 228

Square, dissection of, 53-4

Square root, double sign in, 82,93-4

~ Stickel, P., 229

Stack of paper, 32-3

Steinhaus, H., 9, 227, 228

Step curve, 135-6

Strips, paper, 74-6

Subtraction, fallacious, 40

Suit, lawyer’s, 188

Sum of a series, 118-30

Sunflower head, 58 f.

Surfaces, bilateral, 73, 74; one-sided,
72-4; simple closed, 72; two-sided,
74, 75; unilateral, 73-4. See also
Cylinder, Klein's bottle, Mobius
strip, Sphere, Torus

Syllables, 189

Symmetry, dynamic, 59, 228

Systems of equations, 81, 92, 211-12

Theory of logical types, 191, 195

Theory of numbers, 36-9

Throwing dice, 48, 161-2, 179

Todhunter, 1., 231

Toeplitz, O., 228

Topological paradoxes, 68-79

Topology, nature of, 68-9; practical
applications of, 79

Tortoise and Achilles, 120-1

Torus, 79

Tossing coins, 160-1, 164~5, 179-81

Tower of Hanoi, 33-4

Trains, express and slow, 23; parts
of moving backwards, 67

Transfinite numbers, 146-58, 192,
194 1., 221, 231

‘Trapezium, 111-12

Travellers, 18

Trends in mathematics, 195-6, 233

Triangles, isosceles, 98-102, 198-9,
207; spherical, 114

‘Tricks, coat and waistcoat, 77; mind-
reading, 47-51, 228; rope, 76-7

Trigonometrical paradoxes, 198-200

Trips, bookworm’s, 11; car, 20-1;
plane, 21 f.

Two, powers of, 30-46

Two-sided surfaces, 74, 75

Uncles and nephews, 27

Unequal angles are equal, 103-4

Unequal line segments are equal,
108-11

Unequal numbers are equal, 81, 84-
94, 96 f., 210-11
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‘Unilateral surfaces, 73-4
Units, operations on, 82

Vicious circles, 186-96
Village barber, 188 £.

Volume and density, 172
Volume of revolution, 209-10

Waiter, i8
Water and milk, 23-4

Weather predictions, 178
Weaver, W., 228

Wheat, grains of, 35-6
White, W. F., 229
Whitehead, A. N., 232
Widows and-widowers, 26, 27
‘World’s end prophecy, 34

Zeno, 116, 118,120, 124,230
Zero, division by, 81,.85-8, 109
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behind at school ; or someone who was left
behind in school by mathematics; or a teacher
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or an up-and-coming young executive aspiring
to impress your boss; or a boss requiring to
suppress your up-and-coming young
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