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Regions in a circle 
 
 
 
 
 
 
 
 
 
The question is, what is the next picture?  How many regions will 6 points give?  There's an obvious guess, 
of course, and if I take a vote––how many think the answer's 32?––I can be pretty sure of a number of 
hands.  But some of them are getting gun-shy and they sense a trap.  And then of course, there are those 
who never raise their hands on principle. 
 
I state the general problem as follows: if I put n points at random on a circle, and join all possible pairs of 
points, how many regions will I have inside the circle?  The pictures above give the answer for n equal to 
1,2,3,4, and 5.  What is the answer for n=6?  For general n? 
 
 
An explanation is needed for the phrase "at random".  The 
point is that I'm not allowed any coincidences––to be precise, 
no three lines should ever pass through a common point.  
Thus, to get the next picture in the above sequence, there are 
certain places where I'm not allowed to put the 6th point.  For 
example, the picture on the right is acceptable, the one on the 
left is not.  In the picture on the left, one of the new lines gen-
erated by the sixth point passed through a previous point of 
intersection.  By moving the sixth point slightly, we get an addi-
tional region (the picture on the right).  Thus the "triple intersec-
tion" robbed us of a region.  Another way to impose the "ran-
dom" condition is to say that the points must be placed to get 
the maximum number of regions. 
 
The picture above right gives the answer 31 regions for n=6—
not 32 but 31!  If we add a 7th point, and count very carefully, 
we get 57 regions.  After that, the counting becomes tricky, and 
we wonder what the general relationship might be. 
 
 
 
This is quite a rich problem, and there are many ways to attack it, some sophisticated, and some quite ele-
mentary.  Once the 57 has been discovered, I find that many of my students hit “the numbers”, thinking that 
if they find the pattern numerically, they will have solved the problem.   
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The first thing they do is a fast “successive differences” on the 
R-values and they get the table at the right.  The last column is 
certainly compelling.  What if that pattern continues?  What if 
the next entry in that column is a 5?  I leave it to you to show 
that the next R-value would then be R(8)=99.  Could this be 
correct?  What sort of argument would we need to establish 
that?  Perhaps we might try to relate the numbers in the differ-
ence table to the geometry of the lines and regions, so that we 
could “see” the pattern in the table not just numerically, but 
geometrically.   
 
Okay.  We are interested in “differences” in successive R val-
ues, so let’s ask what happens to R when we add a new point.  
How many new regions do we get?   
 
Well, each new point necessitates the drawing of a number of 
new lines, and each of these new lines will create a number of 
new regions.  But how many?   
 
The key observation (which was also the idea behind our 
analysis of the cutting planes problem) is that this new line 
creates new regions by slicing through old regions and cutting 
them in two, and the number of new regions created is the 
number of old regions this line slices!  And a nice way to think 
about that, is to notice that each time the line intersects an 
existing line, it leaves one old region and enters another, so the 
number of old regions it encounters is one more than the num-
ber of old lines it meets.  
 
We need some notation.  We are focusing on lines and inter-
sections of lines, so let's keep track of the number of each at 
each stage.   Let L denote the total number of lines, I the num-
ber of intersections of lines (inside the circle) and R as before 
the number of regions.  If we tabulate these quantities for the 
first seven pictures, we get the table at the right. 
 
I ask the class to find patterns in the table, and immediately we 
get the observation that: 

R = 1 + L + I. 
Hmm.  This is nice, because if it's true, then we can obtain the 
R-column by figuring out the (possibly simpler) L-column and I-
column. 
 
But why should the above equation hold?  Again we have a 
numerical observation that we would like to verify with a geo-
metric argument. 

n R    
1 1    
  1   

2 2  1  
  2  1 

3 4  2  
  4  2 

4 8  4  
  8  3 

5 16  7  
  15  4 

6 31  11  
  26   

7 57    
 

The last column of the table is 
certainly nice.  But one of the 
students notes that we’ve seen 
the third column before—the 
sequence 1, 2, 4, 8, 15, 26 gives 
the number of regions when 3-
space is cut by 0, 1, 2, 3 etc. 
planes in general position!  Holy 
cow!  [See problem 3] 

n L I R 
1 0 0 1 
2 1 0 2 
3 3 0 4 
4 6 1 8 
5 10 5 16 
6 15 15 31 
7 21 35 57 
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Well, the above argument for the creation of new regions pro-
vides an inductive type of proof!  Indeed, what happens when 
we draw a new line?  Well, R and I both increase, and what we 
argued above was that the increase in R will be one more than 
the increase in I.  Now since L also increases by 1, if the for-
mula held before the drawing of the new line, it must still hold 
afterwards.  To emphasize this, if the new line meets 12 old 
lines, then I will have increased by 12, L will have increased by 
1, and R will have increased by 13––and the equation will re-
main balanced.  Formally, what we have here is a proof by 
induction on n, the number of points.  First we note that the 
formula holds for n=1 (in that case, R=1, I=0 and L=0).  Then 
note that to move from any n to n+1 we add a number of lines, 
and the above argument shows that the formula continues to 
hold with the addition of each new line.   
 
Having perceived and established this formula, our attention 
now shifts from R to L and I (which ought to be simpler), and 
we now try to get hold of them.   
 
The L-column is simple enough.  The students note quite 
quickly that the successive differences in the L-column are 
1,2,3,4, etc.  Of course, it is clear why this holds: consider the 
addition of the 6th point.  This will necessitate the drawing of 5 
new lines (to each existing point).  So L must increase by 5.  In 
general, the addition of the nth point will increase L by n–1.  By 
adding up the differences, we even get a formula for L in terms 
of n: 

( ) ( ) ( )
2
11321 nnn...nL −

=−++++= . 

The expression on the right comes from a standard formula for 
the sum of the first n natural numbers.  See problem 2.   
 
The I-pattern is a bit more interesting, and I put the class into 
small group discussion mode for a time.  A number of argu-
ments emerge.  A popular approach is to do successive differ-
ences again and we get a similar pattern to what happened 
when we tried this with R.  But this time one of the groups 
gives me an “anatomy” of the first-difference column: 
0,0,1,4,10,20.   
 

n I    
1 0    
  0   

2 0  0  
  0  1 

3 0  1  
  1  2 

4 1  3  
  4  3 

5 5  6  
  10  4 

6 15  10  
  20   

7 35    
 

n L I R 
1 0 0 1 
2 1 0 2 
3 3 0 4 
4 6 1 8 
5 10 5 16 
6 15 15 31 
7 21 35 57 
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Consider the 20.  That represents the number of intersections 
created by the addition of the 7th point.  Now these intersec-
tions come from joining the 7th point to the existing points.  For 
example, consider the effect of joining the 7th point to the 3rd 
point.  That new line will intersect all the lines that connect 
points on one side of the line to points on the other.  Now there 
are 2 points on one side and 3 points on the other for a total of 
2×3=6 possible lines and therefore 2×3=6 new intersections.  
Similarly, the effect of joining the 7th point to the 2nd point will 
be to create a total of 1×4=4 new intersections.  The total 
number of new intersections due to the addition of the 7th point 
is: 

0×5 + 1×4 + 2×3 + 3×2 + 4×1 + 5×0  =  20 
and that’s an “anatomy” of the 20.  We can of course omit the 
first and the last terms which will always give 0. 
 
We get a similar anatomy of the other entries in the column.  
For example the 10 is: 

1×3 + 2×2 + 3×1  =  10. 
 
This analysis makes it easy to generate the I column entry-by-
entry and if we put this together with our L-formula, this gives 
us a simple numerical algorithm for generating successive val-
ues of R.   
 
For example, to get the value of R(8) we calculate: 

( ) ( ) 28
2

87
2
18 =

×
=

−
=

nnL  

I(8)  = I(7) + (1×5 + 2×4 + 3×3 + 4×2 + 5×1)  =  35 + 35  = 70 

R(8) = 1 + L(8) + I(8)  =  1 + 28 + 70  =  99. 
This method is a great advance on counting regions on a pic-
ture, and we should be proud of ourselves!   
 
Of course, this is no way to get the R value for n=100 (except 
with a computer).  The point is that, while we have a general 
formula for L, we don't have one for I; all we have is a recursive 
arithmetical "machine".  Can we in fact get a formula for I? 
 
The answer is yes, and the above difference scheme can be 
used to get it; the procedure is just a bit more complicated than 
the argument that worked for the L-formula.  But I'm not going 
to follow that up right now either because there's something 
else around––something quite extraordinary... 
 

n L I R 
1 0 0 1 
2 1 0 2 
3 3 0 4 
4 6 1 8 
5 10 5 16 
6 15 15 31 
7 21 35 57 
8 28 70 99 
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Some years ago I was discussing this problem with a high 
school class, and one of the students was a Pascal triangle nut 
(someone who believes that everything good in life is somehow 
hidden in Pascal's triangle).  So while we were busy writing 
down bigger and bigger R tables, he was writing down Pascal's 
triangle.  And what he saw there was quite astonishing––the L 
column is the second diagonal and the I column is the fourth 
diagonal!  NOTE: there’s an unexpected counting convention 
here––we call the extreme left diagonal of all 1’s the “zeroth” 
diagonal.  In fact, that zeroth diagonal could just represent the 
“1” which is the first term in the R formula.  
 
Isn't that something?  What on earth are we to make of it?  The 
first thing to say is that, if this pattern does indeed hold, it gives 
us a nice formula for R because of course we have a combina-
torial interpretation of each of the entries in Pascal's triangle.  
Indeed, the kth entry (from the left) in the nth row (where the 1 
at the top is taken to be the 0th row) is the number of ways of 

choosing k objects from n [see Pascal] which is written ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
k
n

.  

For example, there are 15 ways of choosing 3 objects from 6, 

so that  15
3
6

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ .  This gives us very elegant formulae for L, I 

and therefore R, and these are displayed at the right.   
  
Below, we use these formulae to get the next entries of our R-
table, for n=9: 
 
Of course, the question is, why should these combinatorial 
formulae hold?  They are so simple and elegant, one feels that 
there must be an interpretation of L and I in terms of choosing 
objects from sets, that makes these formulae clear.  Can we 
find a combinatorial interpretation of L and I? 
 
Well L is not so hard: with n points, you get one line for every 
pair of points, so L is the number of ways of choosing 2 things 
from n.  The argument for I is more subtle, but just as simple: 
notice that there is a 1-1 correspondence between interior in-
tersections and sets of 4 points on the circle.  Every set of four 
points on the circle determines exactly one intersection, and 
every intersection is accounted for in this way.  So the total 
number of intersection I is just the number of ways of choosing 
4 things from n.  Wow. 
 
 

        1         
       1  1        
      1  2  1       
     1  3  3  1      
    1  4  6  4  1     
   1  5  10  10  5  1    
  1  6  15  20  15  6  1   
 1  7  21  35  35  21  7  1  
1  8  28  56  70  56  28  8  1 
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Problems 
 
Look at the column of first differences of I: 0,0,1,4,10,20 (see 
table at the right).  Identify this as a diagonal of Pascal’s trian-
gle (given above), and thus write each of these numbers as a 
combinatorial coefficient.  For example, 20 gets identified as 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
3
5

.  Argue on geometric grounds that that’s exactly what it 

should be.   
 
2.  The formula for the sum of the numbers from 1 to n.   
Write out the numbers between 1 and 9.  Argue on grounds of 
symmetry that their average should be 5.  Then argue that their 
sum should be 9 times their average which is 45.  Use this 
same idea to show that the sum of the numbers from 1 to n is 
given by the formula: 

( )
2

1321 +
=++++

nnn...  

 
3.  Return to Cut plane.  While we are in the "elegant formula" business, a number of students noticed the 
similarity between the above R numbers and some of the number we had generated previously looking at 
the number of regions created by n planes.  To be precise, the sequence 1, 2, 4, 8, 16, 31, 57, etc. turns out 
to give the number of regions of 4-space created by cutting it with 0, 1, 2, 3, 4, 5, and 6 hyperplanes, respec-
tively (Cut plane  Problem 4).  That is, n points in the above circle problem "corresponds" to n–1 hyper-
planes in the 4-space cutting problem.  That suggests that the above R-formula can also be used to give the 

number of regions created by n hyperplanes in 4-space.  It will be R
n n n

=
+⎛
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4

.  We have to 

use n+1 instead of n because, for example, the R value for the case of 5 hyperplanes seems to correspond 
to the R-value for 6 points on the circle.  Actually, it would be nice to have a formula which had n in place of 

n+1, and in fact we can get that from the rule: n
r

n
r

n
r
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This is in fact the "addition rule" which is used to generate Pascal's triangle.  [See Pascal].  Using this (for 
r>0) we get a spectacular formula for the number of regions created by n hyperplanes in 4-space: 
 

R
n n n n n
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Why stop there? 

n planes in 3-space:   R
n n n n
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n lines in 2-space:  R
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n points in 1-space:  R
n n
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Another wow. 
Is there any geometric logic behind these decompositions? 
 

n I    
1 0    
  0   

2 0  0  
  0  1 

3 0  1  
  1  2 

4 1  3  
  4  3 

5 5  6  
  10  4 

6 15  10  
  20   

7 35    
 


